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NEW METHODS OF STUDYING TELESCOPIC LENSES WITH REMARKS
ON ASSESSING QUALITY

Y. Vaisala

I. Introduction /3%

—_—

1. The most natural method for testing telescopic objec-
tives in the observatory is to view a celestial body directly
through the telescope. In general, close double stars have
been considered suitable objects for this purpose. Nevertheless,
a much more reliable and detalled picture of the quality of an
objectlve 1s obtained by viewing extrafocal images of the stars
[1]. This technique, to which many famous opticlans for objec-
tives have resorted, is so sensitive that the objective can
confidently be assumed faultless in practice when viewing
extrafocal images does not turn up any appreciable dberratioens.
Some idea of the quality of a photographic objective can also
be deduced by photographing stars in very stationary pictures.
Since the image on the photographic plate is not the diffraction
pattern of the star at the moment, but the sum of the individual
momentary effects, air turbulence will make the image of the star
on the plate larger than the instantaneous diffraction patterns,
and this 1s why, 1in examining a photographlc objective, defects /4
can be overlooked which would easily be detected in a.visual. !
telescope of corresponding size through observation of stars.

Neither the techniques mentioned above nor the Foucault
knife-edge method usually employed by opticians permit more than
a qualitative determination of the flaws in an objective. In
order to compare the objectives of different observatories,
their defects must be determined quantitatlvely, just 1like other
defects in astronomical instruments: collimation errors, the
varying thickness of axle journals, etce. It 1s true that it is
less useful to know the defects in cobjectives than to khow e.g.
the thickness of the axle journals in a transit, in the sense
that the results of observations would he correctable if the
errors were khnown. However, 1f an objective's errors were known
numerically, there would then be a basis for an impartial
Judgment on whether the objective satisfied the requirements
demanded of a good lens, and that c¢an be corrected if needed.
Moreover, if the errors in the objective are known, the worst
parts can be covered and its performance enhanced in this way.
As one example of the importance of studylng the defects in
any objective, the B80-cm objective of the large photographic
telescope in Potsdam has been tested. Hartmann has given a
detailed description of this testing [2]. This is a good
illustration of opticians and astronomers cooperating to make

¥Numbers in the margin indicate pagination in the foreign text,.



great improvements in an originally very defective objectilve.
A characteristic example of just how incorrect an assessment
of the quality of an obJective can be without numerical infor-
mation on its defects is supplled by the 34-cm objective of
the smaller photographic telescope of the same observatory,
which has been studied precisely by Wilsing [3]. In this /5
instrument, which had been prailsed as "an excellent "optical
product" [3, p. 5], the zonal aberrations make the brightness
in the center of the diffraction pattern much less than that
in the center of a pleture supplied by a flawless objective of
corresponding size, while the diameter of the diffraction disk
for this objective is somewhat smaller than that for an 1ldeal
objective.

The most noticeable of the defects of an objective is
chromatic aberration, a defect which cannot be eliminated by
grinding, since it is inherent in the nature of the glass.
These days, the refractive power of a glass at different wave-
lengths is determined very precisely before it is used in the
manufacture of an objective, so that chromatlc aberration can
be corrected for any two arbltrary wavelengths to the degree
permitted by the glasses employed. The remainder of the
chromatic aberration, the so-called secondary spectrum, can be
determined by the method reported by Vogel with the aid of a
spectroscope. Nowadays, a large error at the apex of the color
curve can only be due to major errors in the radii of the
surfaces of the objective, errors which can naturally be avolded
in careful work.

The situation is different for errors due to inhomogeneities
in the lens glass, and to discrepancies between the actual surfaces
and the mathematically calculated shapes -- for lenses, usually
spherical surfaces. Such errors appear as zonal aberrations,
inecluding spherical aberration and astigmatism. All the efforts
of opticians are aimed at minimizing these errors. Astigmatic
errors are usually vanishingly small, at least in rather small
objectives. However, substantial zonal aberrations can occur in /6
both small and large objectives and mirrors. It is therefore
of particular importance that there be precise methods by which
zonal aberrations c¢an be determined quantitatively.

Numerical determinations of shape defects (zonal aberrations
and astigmatism)} of objectives were not carried out in observa-
tories until Hartmann invented his famous method of extrafocal
images [4]. The main idea of this method is as follows. A disk
is placed in front of the objective. There are many small holes
in the disk, dividing the light into thin beams. Either micro-
metrically or photographically, the position of this beam 1ls
determined on two planes perpendicular to the axis of the
objective, one of the planes bheing closer than the focus, and
the other beyond it. .The zonal aberrations and the astigmatism



are determined from the measurements. Usually, the measurements
are taken photographically, since this minimizes the actual work
at the telescope, and the results are more precise than those

of visual measurements. Another factor 1s that ¢the light beams
coming from different points on the objective can be photographed
at the same time, so that any motion of the telescope affects

all images in the same manner.

Apart from its good points, however, Haptmann's method has a
drawback which must always be recalled when it is to be employed.
Namely, the smaller the holes, the lower the accuracy of the
measurements in general, since reducing the size of the holes
increases the diameters of the corresponding diffraction patterns,
and this naturally reduces the precision of the measurements.
Moreover, even a slight irregularity 1n the shape of the holes /1
and any air bubbles in the objective induce irregularities in
the diffraction pattern thus detrimentally affecting the measure-
ments [5]. On the other hand, the holes cannot be too large,
because then they could not be made impervious enough and it
would no longer be certain that the objJective could be held
errorlessly on a reglon of the size of the hole. In studying
an objective 8 cm in diameter, Hartmann used holes only 4 mm
in-diameter [5]. The diameters of the corresponding diffraction
patterns were on the okder of one arc minute. It is clear that
the precision of such patterns is many times smaller than the align-
ment accuracy of a pattern generated by the full aperture.

With very large objectives, the situation 1s quite different.

In this case, the holes can be several centimeters in diameter,
and the precision is then not much less than the accuracy 1n
using the objective with full aperture. The unsteadiness of

the lmages and certain other factors prevent measuring accuracy
from rising very much as the aperture is enlarged, as long as

the aperture is already several centimeters. Therefore, the
larger the obJective, the smaller the role played by the unfor-
funate circumstance mentioned above.

2. As observed previously, zonal aberrations are generally
much more noticeable than astigmatic errors. The former are
usually expressed by giving focal lengths for different zones
of the objectlive, reduced by a mean focal length. The zonal
aberrations can be graphically illustrated by plotting the
zones on a horizontal axis and the focal-length differences /8
on a vertlcal axis. Hartmann has published extraordinarily o
valuable material on modern cbjectives [2], »presenting the
zonal aberrations of several objectives in both numerical and
~graphic form.



If the focal-length deviations are known, 1t i1s easy to
calculate the distribution of light determined by geometrical
optics in any arbitrary plane near the focus and at right
angles to the optical axis. The plane in which the concentra-
tion of the light is greatest can be consldered the focal plane.
The smaller the area in which the light concentrates in the focal
plane, the better the objective is from the viewpoint of geo-
metrical optics. If the mean value of the lateral deviations
of all light rays in the focal plane is dlvided by the mean
foecal length and the quotient multiplied by jzoﬁmgl , & number
T is obtained which has come into use as a measure of the quality
of an objective, as a so-called technical constant. This param-
eter is a suggestion of Lehmann [6]. T 1s approximately the
mean radius of the geometiical image, expressed in arec seconds.
In [5], Hartmann also calculated the value of T for all the
lenses he inspected.

Neveirtheless, caution is advisable 1n assessing objectlves
ornt the basls of focal-length curves and the constant T. It must
be recalled that geometrical optics ignores the phenomenon of
diffraction. If the defects in an objective are so large that
thelir effects far surpass those of diffraction, the distribution
of 1light in the focal plane can be determined quite correctly
by geometrical optics. However, the defects in astronomical /9
objectives ought to be so small that the distribution of the
light in the image will be mainly determined by diffraction and
not by zonal aberrations, because only then is it worth employing
the strongest magnifications with an objective. The distributlon
of the light must then be calculated from diffraction theory,
since geometrical optiecs can lead to highly erronecus results,
as will be shown later in examples.

The technieal lens constant based on diffraction theory
was defined by Strehl [7]. He proposes that the standard for
the guality of an objective be the brightness of the milidpoint
of the diffraction pattern produced by the objJective divided
by the brightness of the midpoint of a diffraction pattern
produced by an ildeal objective of the same type. It would be
hard to find a more appropriate reliable quantity as a standard
of quality for an objective. Unfortunately, Strehl's constant
is not as widely used as i1t shouid be. This is probably due to
the fact that it 1is considered tedious to calculate it. The
greater popularity of the constant T may also be duelto its
simple interpretation as a measure of the size of the geometrical
image. This may perhaps ignore the fact that light rays in the
sense employed in geometrical optics do not exlst and T can also
be assigned a physlcal 1lnterpretation.

3. The primary purpose of the present work is to describe
methods of determining defects in objectives, methods which
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will be free of the drawback of Hartmann's method -- i.e. that

the preclsion decreases when the size of the holes is reduced.

The new methods will therefore make 1t possible to. obtain /10
greater accuracy than in Hartmann's method, whenever permitted

by the pictures, and thils fact will be demonstrated by direct
cbservations. In the same way,. the discrepancies between the

light front and a sphere will be determined without integration.
These discrepancies must be calculated when the distribution of
light near the focus 1s to be determined on the basis of dif-
fraction theory. The methods to be described are particularly well
sulted for studying visual objectives, and I have visually

examined all the objectives used as examples, but this does not
prevent these methods from being used on photographic obJectives

as well., A suitable method is also given for testlng visual
telescopes equipped with neither an ocular micromefer nor cross-
hairs.

The methods to be described are based on observations of
diffraction patterns produced by the interference of light rays
passing through two, three,.or even four holes. In Hartmann's
methed, a light ray passing through a given hole generates its
own diffraction pattern independently of the other light rays.

In the literature, I have found an article in which the Jjoint
diffraction pattern of two holes was used to study optilcal

surfaces. Namely, Michelson [8] appears to have used the method

of two holes as long ago as 1918 to determine the errors of a

lens and a mirror in the laboratory. However, his method cannot

be successfully employed in practice in observatories for several
reasons, which I will give later. In optical workshops as well,

the methed developed by the author of the present work ought to /11
be easier to use and more accurate than that of Michelson.

The last section of my treatise deals with the technical
constants of lenses. First, a proposed method for more efficient
calculation of Lehmann's constant is derived, and then it is
shown that the mean deviation of the light front from the surface
of a sphere 1s just as good a practical standard for the quality
of an objective as Strehl's constant. The discussion will be
illustrated by several typlcal examples. Pinally, the sulitability
of the Lehmann and Strehl constants as standards of quality for
objectives will be analyzed, the formulas derived will be
applied to several objectives, the zonal aberrations of which
I have found in the literature, and the refinishing of objectives
will be treated.



II. The New Methods /12

Basic Idea of the Methods

k. The wave front of light arriving from an infinitely
distant point, such as a fixed star, 1is a plane. Passing
through a flawless obJective, the wave front is converted to a
Sphere, the center of which is at the focus of the objective.

In actuality, of course, all objectives are more or less flawed,
and thus the light front differs more or less from the ideal
surface, the sphere. The problem 1s now to discuss methods of
determining these discrepancies.

In Fig. 1, the so0lid curve is the light front and the
dotted line is a spherical surface differing only slightly
from the light front. O is the center of the sphere. The normal
to the surface drawn at point P of the light front intersects at
point @ the plane through point O and perpendicular to the optical
axis.

Hartmann's method involves
| determining the position of podnt
| Q with the aid of extrafocal
; lmages, i.e. determining the direc-
r tion of the tangent plane to the
| light front at point P. 1In the
) introduction, it was pointed out
| that diffraction makes it much
! more difficult to carry out this
determination. In fact, the
exlstence of such a difficulty
would be immediately evident even
1f we knew 1little of the real /13
Fig. 1. nature of light, since experi-
mentally, it is impossible to
determine the tangent of an
arbitrary curve or the tangent plane of a surface. On the other
hand, we can determine the position of the chord to a curve or
a surface or the position of a plane passing through three points
on a curved surface. '

To study a light front, we then find natural methods by
looking for the position of a chord of the surface or a plane
passing through three points instead of a tangent line or plane.
We achieve this goal by placing a sereen with two or three holes
in it in front of the objective, and allowing the light rays
coming from different holes to interfere with one another. Let
us assume that there are two small holes in the sereen through
which two polnts on the light front have been determined. 1In
that case, the well-known interference pattern formed by
parallel bright bands is produced in the focal plane. The



central bright band is equally distant from the two points on

the wave front. By measuring the position of the central inter-
ference band, the direction of the chord connecting the two points
on the wave front can be determined.

By using a screen with three small holes at the vertices of
a triangle, an interference pattern composed of bright points
is obtained. If the position of the central point, which is /14
equally distant from the three points on the wave front deter-
mined by the holes, is measured, the direction of the normal to
the plane passing through the three points in question on the
wave front can be determined.

We arrive at other methods when we attempt to determine
the curvature of the wave front in the same way as radii of
curvature are measured with the spherometer. If the spherometer
has three adjacent feet, of which one can be extended and retracted
measurably, the radius of a circular are can be determined.
Usually, however, the spherometer has three fixed feet forming an
equllateral triangle and a fourth foot at the midpoint of the
triangle, measurements being carried out for the latter. We
obtain a method for measuring the curvature of a wave front
which 1s analogous to the first spherometer model by employing
a screen containing three celinear small holes. An interference
pattern, again formed by bright parallel bands, is projected
on a movable plane, and the interference pattern changes when
the distance of the movable plane to the objective is changed.
One of the bands passes through the center of the cirele drawn
through the points on the wave front determined by the holes.
By shifting the movable plane, the position of this bright band!
is discovered, and thus the radius of the circle determined. On
the other hand, if a screen with three holes at the vertices of
an equilateral triangle and a fourth hole at the midpoint of
the triangle is used, an interference pattérn formed by bright
points 1s obtained, and the pattern varles when the movable plane
1s shiffed. One of the bright points 1s situated at the center
of the sphere passing through the points on the wave front deter- /15
mined by the holes. By shifting the movable plane, the position
of this pointl is ascertained, and the radlus of the sphere
determined. This method is therefore reminiscent of the measure-
ments with a customary #4-foot spherometer.

The Two-Hole Method

5. Flgure 2 depicts a meridian section through a light
front and a sphere differing very little from the front, namely
the reference sphere. The center of the sphere is 0 and its

lrater on, 1t wlll be explained how this band or polnt is
distinguished from the other ones.



radius is b. The polnts Py
and P, are two polnts on the
light front and Pi and P} are
the points on the reference
sphere closest to Py and Pp
respectively. We term the
distances P{Py = hy and PiPp =
= hp the deviations of the
light front, taking these
deviations to be positive in
the case 1n which the light
front is behind the reference
sphere at the points in question,
relative to the direction of
propagation of the light. Let
D be the length of the chord
PIPE'

Assume that the deviation hj is known. We can determine /16
the deviation hy 1f we know the angle e between the chords
P1P5 and P{P). 'Let us imaglne that the deviations are small.
We will consider e positive when hp 1s greater than hy, as
deplicted in Fig. 2. Then

h.=h.+¢D.E (1)

The angle ¢ between the chords 1s equal to the angle between
the central normals PQ and P'O of the chords. We can determine
this angle if we know the distance n from O to the intersection
Q@ of the normal PQ and the plane passing through point 0 and
perpendicular to the optical axis, as well as the angle w which
this normal makes with the optlcal axis. n will be positive
if the point Q lies to the right of the optical axis, as in
the diagram, and negative if it is to the left of the optical

axis. Hence _
_ heosSo
TS \ (2)

and, applying Eq. (1},

hy=hy + ?qcosm; ‘\ (3)
In practice, 1t can usually be assumed that cos w = 1.
This is the basic 1dea by which the measurements will be
carried out In practice. In the immediate vicinity of the

objective, either in front of it or behind 1%, a screen is
placed 1n which small holes have been made at points Py and P».
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The form of the interference pattern produced by the holes is

well known from physics texts. We first assume that the holes

are infinitely small in all dimensions, and that the light is
monochromatic at the wavelength A. On any plane extending in /17
the direction of the chord PPy, a flgure is formed which con-
sists of very many bright and dark lines, and which is symmetric
with respect to the normal plane of the chord PP,. The line

of intersection of this normal plane and the image plane will be
bright since it is an axis of symmetry of the figure. The spacing
of the lines 1is ba/D.

Since, in reality, the holes are finite, the lines can be
Perceived only near the focus, and the number of lines diminishes
as the size of the holes increases. Moreover, if the light is
not monochromatic, the lines develop into spectra, so that only
a few lines can be seen due to the superposition of spectra of
different orders.

Determining the position of the central band' -- g measure-
ment which can be carried out either visually by means of a
micrometer or photographically -- simultaneously determines the
position of the point Q. For the point O, any point as close as
possible to the focus in the plane of motion of the micrometer
hairline or on the photographic plate can be chosen. The difference
hy - hy 1s determined with the aid of Eg. (3).

We then displace the screen laterally, so that the hole Py
arrives at the polnt previously occupied by P, and Py comes to
a new polnt where the deviation of the light front is h,. If
we agaln measure the distance of the central bright band from
the point O, we obtain the difference h3 - hs. Continuing the
observatlons in this fashion, we obtain the equations

hs=h1+€’h:
ha=hz+?’a’a, ’
i (4)

We can e.g. wrlte hy = 0. Then, from the equations in (4), we /18
Obtain h2, h3’ hu > )

By this method, the deviations of a light front from the
sphere with center at 0 can be determined. The distance of the
crosshalrs or of the photographic plate from the objective is
gthus indicative of ‘the radlus of the reference sphere, and



the point from which the distances n are calculated determines
the direction of the axis of the reference sphere. The devia-
tions of the light front from any other sphere, differing only
slightly from the reference sphere employed first, can be
calculated easily;. asiwill be shown later, from the deviations
hy, ho, hg, caan

The shape of the holes in the screen could of course bhe
arbitrary, as long as the dimensions of the holes were sufficiently
small in all directions, but naturally the holes will be regular,
e.g. round or rectangular. Since the astigmatie errors will in
general be small in comparison to the zonaliaberrations, it is
best, when determining zonal aberrations, to make the holes
rectangular, with the long side perpendicular to the line con-
necting the holes, 1n order to obtain as much light as possible.

The two-hole method can naturally be used for determining
factors other than the zonal aberrations. With this methed,
the direction of any arbitrary chord connecting two points on
a light front can be discovered. The entire light front can be
"leveled" by the two-hole method, in which case 1t is best to
first ascertain the deviations of just a few points on the surface,
and then starting from these, to defermine the deviations of a
suffiecient number of intervening points. The entire measuring
technique is highly reminiscent of the precision leveling of a
large area of land.

™~
s

Three-Hole Method

6. As previously mentioned, the position of the plane
passing through three points on a light front can be determined
by using a sereen with three holes. For the sake of symmetry,
of course, it is best to make the holes equally large and at
equal distances from one another. The form of the diffraction
patftern in the vicinity of the feocus can be calculated in the
following manner, assumlng that the holes are infinitely small
and that the light is monochromatie.

Let Py, Py, and P3 be three points at the vertices of an
equllateral trlangle on a light front, and suppose that the
holes of the secreen are located at these polints (Fig. 3). We
employ a skew coordinate system, with the origin at the midpoint
of the triangle P1P2P3 the x-axis through the point Py, the
y-axis through the point Pp, and z-axls perpendicular to the
plane PP the positive directlon being that toward the image.
Let the di %ance of point P from the origin be r. We consider
the distributicn of light in a plane E parallel to the xy-plane.
Let b be.the distance of the intersection of this plane and the
z-axls from the point P.

10



The distance s of a point /20 .
Q(&yn,z) in the E-plane from
one of the points P(x,y,0) is
obtained from the equation

S =@ - —E- DN \

Since P lies on the light front,

Bzt 4 gty 4 g /
Fig. 3. and hence

S=PtE -2+ @20+ B4ty |

Assume that & and ¢ are very small, so that

sebi¥=2F:, T-2p
$=b+ S5 E+ IFW'\

Therefore, the distances from the polnt Q o the points Pl(r,D,O),
P>(0,r,0), and P3(-r,—r,0) respectively are

sl=b""%§+"2‘c5’h

Ss=b+ ) 5+ o1

Let t be time, A the wavelength of the 1light, and T the
period. The resultant oscillation of !1ight arriving at point @

from the poihts Py, Po, and P3 is proportional to the expression

Fesintel ) a4 soae(i-3.

Substituting in the expressilons for the distances sj, s,, and
53, We obtain, by the addition theorem:

V.==‘Csin2..vr(;;-- ?)—Scosﬁn(;—.——%}- /

t

11



where C = cos (=28 + 1) + cos (' —27) + cos (F' + 1),

§ =sin (= 28+ 1) + sin (F' = 27) +sin @+ 1), |

i . nl'.
F=ipls T=7p7 | (5)

Finally, if
C=Mcosep, S=Msing: ,

then

i

V=Msin[2z(:;-.—-7b)—q]; M=C*+ 8% |

i

The intensity I of the light is proportional to the kinetic
energy of the oscillation; therefore M2 can be taken as a
measure of the intensity of the light.

Carrying out the calculations, we find
I=M1=3+2cos(35—3¢)+2cos3¥ +2cos3¢. (6)

It is easy to see that I reaches its maximum value of 9 when

F-mZ, ¥ =ny (Muna=0,%1,%2--) !’ (7)

or
21hH 2.b
E=p, 200, =, 2,
S=nire n=my, \ (8)

Henece, the light maxima are oriented in the manner depicted
in Fig. &. At the intersection point of the z-axis and the
movable plane, a polnt equidistant from the points P, there is
naturally a maximum. The surrounding maxima form a regular
hexagon, and cutside the latfer 1s a new hexagon the points of
which form equilateral triangles with the points of the finst
hexagon, ete.

12
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The intensity of the light is zero /22
at the midpoints of the triangles formed
by the maxima. The distribution of the
light can be graphically 1llustrated by
computing curves of equal light intensity.
Figure 5 shows the curves of equal light
intensity surrounding a maximum point,
the intensity of the light changing by
half a size class in going from one curve
to the next, so0 that the ratio of light
intensities for points on successive curves
is 1.585. These curves correspond
to the values I = (9), 5.679,
3.583, 2.261, 1.426, 0.900, ....

Just as in the two-hole
methed, enlarging the holes in
the three-hole method reduces the

‘ number of light poihnts, and when
! the light is not monochromatic,
there 1is just a collection of
colored series of points around
the central point, no matter how
small the holes are made.

|

j In studying the wave front,

. only the position of the central
light point is of interest. By
determining 1ts position in the
movable plane relative to the
axls of the reference sphere,
thus involving a measurement of
two coordinates, the deviations

~
Mo
LN

hy, hp, and h3 of the points P}, P, and Py from the reference
atio

sphere can be determined in re

n to each other. By shifting

the screen in suitable fashion, the light front can be studied
at a sufficient number of polnts. The three-hole method is
particularly suitable for determining astigmatic errors, as will

be explained later.

Three-31it Method

7+ Above, 1t was briefly mentioned that using a screen
wlth three successive holes makes 1t possible to determine the
radius of the clrcle passing thriough the points corresponding
to the holes on the light front. We now examine this method
more closely, by first meking the holes infinitesimally small
and the light monochromatic.

13



L . ‘ Because of the screen, the light
© ' can propagate only from the points P%,
P, and P, on the light front .(Fig. &).
0 is the center of the cirele passing /24
through the points Pj, Fp, and Pa. Let
. the radius of the circle be R, and let
"t the distance of the points P; and Pj
i from the line P»,0 be D. In:studying
the distribution of the light, we can
restrict ourselves to the plane P1P2P3O,
\ since the curves of equal intensity
in the vicinity of this plane are lines
at right angles to this plane, as 1s
easy to see. We calculate the Iintensity
of light at the point Q, at a distance n
from the line P-0, while the distance
from P, to the normal to Pp0 passing through @ is R + t. Then,
we eas%ly obtain the following expansions for the distances
PlQ = Sl, PQQ = SE’ and P3Q = 83:

Fig. 6.

. D__ D ' ‘
.q=R+c+qu2m§+n-=&+gq—%%c+ﬁu
8.=R'+c+“‘, ' ’

' , i
.
S=R+{—Fr—gpmt+ =Sa—,—;'i—2—%t+ . 1

Let the holes Py and P, be equally large, and let P5 be k times
as large as the first fwo. The osclllatory velocity of the light at

point Q is then proportional to the expression

V=sm2n(%—?)+kﬁn25(%—?)+ﬁﬂ2n{%—?}:

The intensity I of the light is calculated in the same way as
in the previous method. By carrying out the calculatlons, we

find
4
I=k_’+4kcos"7(g) €cosg§%q+4cos=g}%q \
. 2 3 -
=k'sip'%(g) C+[k‘cos%(g) L‘+2cosg‘1%q]: \ (9)

Using the symbols

(10)
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we obtain /25
I=Kk+4kcosl cosy +4cos*y
=kisin?t’ + (kecos ' + 2 cos 4). (11)
I is therefore a periodlic function of both ¢! and n'. Both

Periods are 2w.

First consider z' constant. If |k cosg'| < 2, I reaches

its maximum at the polnts n' = 0, %1, 227, *37, ... and its
minimum at the points at which kucoszg' + 2cosn! = 0. On the
other hand, if |k cosg'| 2 2, I has its maxima and minima
alternatingily at the points nt = ..., -2, -w, 0, +m, +27, ....

For every plane at right angles to the line P»0, there will be
a .banded diffraction pattern, which changes as the distance
from the plane to the point Pp is varied.

Now consider the extreme values

=0, Li=ki+d1r4kcosy,

I
.I==”’ I|=]\'2+4—4k(‘08;' { (12)

as ¢' 1s varied. When g!' = 0, I 1s a maximum and I; is a minimum.
As |g'| increases, I decreases and I; increases until they are
equally large, at ¢' = zw/2. At these points, Iy and I, are
changing most rapidly. As |z'| continues to increase, 11

becomes larger than Ip. When ' is sufficiently close to the
values /2, Ig and I; are both maxima when k > 2.

From the above mathematical analysls, the best waysto
determine fthe radius R of curvature can be deduced. With a
high-magnificaticn ocular, the diffraction pattern is observed
on both sides of the plane ¢' = 0. PFirst, the ocular is e.g.
inserted so far that the interference bands, which are initially
of different intensitles, become equally bright. Then, the ocular /26
is withdrawn until the bands are agailn equally bright. Halfway
between these positions of the ccular is the pesition at which
one sees the plane ' = 0. Since Ig and I; are changing fastest
at ¢g' = *w/2, 1t is clear that this measurement is much more
accurate than trying to recognize directly the position of the
g' = 0 plane by leooking for the point at which one interference
line (Ig) reaches its maximum, and the other (I7) its minimum
brightness.

Since the holes are in reality finite, the number of inter-

ference lines will be limited, and the Interference pattern will
dlsappear completely when the movable plane i1s withdrawn far
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enough from the point O, so that only the extrafocal images
induced by the separate holes can be seen. By exploiting this
fact, ohe can discover whether the movable plane under investl-
gation is ¢' = 0 or one of the planes ¢! = 2nm (n = 11, £2, R I
If the light employed is not monochromatic, this will also limit
the extent of the interference phenomenon in all directions.

Let us first determine the value which k must assume 1n
order to be able to carry out the observatlons as accurately
as possible. The faster the difference Iy - I varies in
relation to the mean light intensity (I + Il) 2 of the band,
the easier it will be to detect the plane in which Iy and I3
are equally great. Hence, as a sensitivity criterlon for the
method, let us consider the expression

-K--lk-———' “Eri (13)

When k¥ = 2, K achleves its maximum value of 2. The method 1s
then most sensitive when the center hole 1s twlce as large as
the outer ones.

When the holes are of equal size, i.e. k = 1, then K = 8/5,/27
and the accuracy 1s therefore not appreciably smaller than in
the theoretically most faworable case. For certalin reasons, e.g.
because 1t 1s desirable to always view the same surface sections
when the screen is shifted, it ought to be best to make all holes
the same slze and shape in practice.

This method 1s particularly well suited for determining
zonal aberrations When the radius of the circle passing through
the points Py, and P3 on the wave front is determined, an
equation is obtained for the deviations of the wave front at .
these polnts. If the screen is then shifted, and the radius of
curvature is determined once more, an equation is found for the
deviatlons of the points Pp, P3, and Py, etec. If arbitrary values
are assigned to the deviations of three points on the wave front,
the remaining deviations are obtained from the equations deter-
mined by measurement. In practice, 1t is most convenient to
make the holes 1n the form of narrow rectangles, and for this
reason 1 have termed the method the three-slit method, in order
to distinguish it from the three-hole method previously described.

Four-Hole Method -

8. By using a screen containing three holes of equal size
forming an equilateral triangle and a fourth hole in the middle
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of the first three, one acquires a method with which the curva-
ture of the light front can be determined in the same way that
the curvature of a spherical surface is measured with a conven-
tional spherometer.

In calculating the diffraction pattern, we proceed in the
same way as before, and agaln assume the light %o be monochromatic
and the holes to be Infinitesimally small, sc¢ that the light can .
propagate only from the points.Pq, Pj, P3, and Py on the light /28,
front, of which Py, P 23 and Pz form an equllateral triangle and
Py is equidistant from the po%nbs Py, Po and P Let O be the
center of the sphere passing through the points P, and let R be
the radius of the sphere. We will employ a skew coordinate
system, the origin of which is the point Py. The z-axis colncides
with the 1line Pj0, the xy-plane 1s perpendicular to the z-axis,
the xz-plane passes through the point P, and the yz-plane passes
through the point P>. Let the distance of the points P, Po,
and PE from the z-axis be r. Let the holes Py, Pp, and P3 be
equally large, and let the hole By be k times as large as the
first three.

Let us calculate the intensity of the light at a point :!
Q(g,n,R+z) near the focus. For the distances P3Q = sq, P5Q = 85,
P3@ = s3, and PyQ = su, we obtain the following expansions:

t=R+c_-R'§ +2_ff" 2R|C+ *ty

= r
R+c+2u *aRTe 2m

R+§+ . |

i
3l=R+:+2‘;?- ;’} 2R’§+ . l
1

v

The oscillatory velocity at the point Q is proportional
to the expression

V%shé#(%~—)+mn2w( )+mn2ﬂ(__?)+A

" + ksin 2:(7—-) :

The intensity I of the light is calculated as 1n the
previous cases. Let

§‘= §: ’h c,=x_r:£, |
wwe ’f AR (14)
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Then

~
PO

I=k’+3+'2k[cos(—2§'+ =) +cos(¥—29 50+ \ %15)
“+cos (¥ + ¢ —{)) +2[cos (3¢ ~39) +cosIEF+cos3q]. \

I 1s therefore a periodic functlion of all the variables, and
the length of the periods 1s 2.

Consider the distribution of light in the plane z = R + ¢
and for the time being, take t¢'otolbe constant. I acquilres
its extreme values at the points

§'=nlg§!! "i":n‘!z_::'" (nl:nt"_’o’il)izp'.")l. i

and these extreme values are all maxima when k < 6 and ' is
sufficiently small. If k < 3, the extreme values are maxima
no matter what the value of r'., There are no other maxima.

The maxima therefore fall at the same points as in the
three-hole method, but they are not of equal intensity, but
can be divided into the fe¢llowing three classes

(1) .I§"= (2n, +ny) 2{’ | 7 =(n+ 2n,) 23”’ ) l
- \ L=Kk'+9+6kcos{,
1@ T=@ntmn 0¥ =m0y,

- h=k+9+6keos (3 +1), (16)

(3) 5':;(2’11'*'":*‘2)23”' 'l’=(ﬂ|+2‘ﬂa+2)g'3§,
Is=k’+9+6kcos(23"‘--;’),

The distribution of the maximum polnts in the movable plane is
visible in Fig. 7. ...

The maximum point ¢' = 0, n' = 0 belonging to Class (1) is
the central point of the figure. It is surrounded by a regular
hexagon of maxima belonging in alternation to Class (2) and
Class (3).

With the aid of the maxima (2) and (3), the position of
the plane ¢' = 0 can be determined precisely. From the above
formulas, it can be seen that Ip = I3 when g' = 0, and in the
vicinity of the plane ¢' = 0, I3 > I> when z' > 0, and I3 < I, /30
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when ' < 0. In practice, the plane
; r' = 0 1s determined by inserting

i and withdrawing a strongly magnifying
- : 1 ocular and observing when the maxima

wt

L (2) and (3) surrounding the central
. « ® + s ® ) point are of equal intenslty. This
v e e e e ; position of the ocular corresponds
‘ } to the plane ¢' = 0, assuming that
* . e 0 no error of an entire period has
oo / been made, where ¢' = 27, 4w, ....
LI I

. In actuality, the holes are
Fig. 7. finite, and this restricts the

extent of the interference pattern

in all directions. By inserting or
withdrawing the ocular far enough, the joint interference pattern
formed by the holes can be made to disappear, leaving four separate
diffraction patterns. If this circumstance is expleoited, one can
ascertain whether a plane in question is ' = 0 or one of the
planes z' = #£27, 4w, ....

Again, we look for the value k at which the method 1s as
sensitive as possible. As a sensitivity criterion, we can employ
the expression

d : .
_ 'd;'r(ra"'lgll- _ sﬁk o
Y N LT BR-3k+9
i 2‘(1’]4’!]’ F_o - L - . (17)
. . -
If k = 3, K attains its maximum value of 2/3. This /31

method is therefore most sensitive when the center hole is just
as large as all the surrounding ones put together, If the holes
are all of the same size, i.e. k = 1, then K = 8/3/7. Although
this changes the accuracy quite a bit, it is still probably best
to make all holes the same size in practice.

The four-hole method is particularly sultable for accurate
focusing of telescopes. The central hole is placed at the
center of the objective and the remaining holes near its edge.
The method can also be used to determine zonal aberrations.
However, because of the unsteadiness of the images, the four-
hole method 1is only usable with exceptlonally good images for
large objectives. '

Theory of the Methods When the Holes Are Finite

9, In deriving the formulas, the holes have so far been
assumed to be infinitesimally small. We will now detérmine the
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light distribution in the diffraction pattern for the two-hole
method under the assumption that the holes are finite. We
will attempt to ascertain the errors which might arise if the
holes were identified with their midpoints in determining the
shape of the wave front using the two-hole method.

We will first determine the form of the diffraction pattern
broduced by two equal holes Ly and Lo in the focal plane oriented
in the same directions, when the light front is assumed to be a
sphere and the light monochromatic at wavelength A, Let the
radius of the sphere be b, and the separation of the "centers of
gravity" of the holes D. As the ordgin of an orthogonal coordinate
system, we choose the focus 0. As the z-axis we take the central
normal of the line connecting the centers of the holes. Let the /32
y-axls be parallel to this line, positive toward the hole Lo.
Let the x-axis be perpendicular to the yz-plane.

The distance s between the point Q{(g,n,0) in the movable
plane and the point P(x,y,z) on the light front is obtained
from the equation

St=(@— B+ (g )+ = b 23— 2y B
Very close to the origin, it is suffilciently accurate to write

Tt _yn |
S=b—"%~%

Since the wave front is just a very small portion of the
surface of a sphere, the area of the surface element on the
wave front can be taken to be dx dy. The resultant oscillation
at the point Q is proporticnal to the expression

i ffsin2:r(%.~—-})dxdy, i
(Li L) S
where the 1lntegration is performed over both holes. The intensigy

of the light at polnt Q is calculated as before. We employ
the symbols

,

C=ff€052r} (¢x + ny) drdy,
(L L)

: S=‘ff5in%—'§($z+qy)dxdy. \
(L Loy

The intensity of the light in the movable plane is then pro-
portional to the expression
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I =c%+ s,

If we set y = -D/2 + y' in integrating over the first hole and
y = +D/2 + y' in integrating over the second hole, we obtain
the same limits for both integrals. By simplifying, we find

S~
La)
L¥S]

Cé2cos%-c,. ‘

|

S’=2CDSR—‘DE’-,"S“ ,

taking the intégrals

C,mffcos—E(Em+qy')dxdy, | (18)

S, ffsm F (Ea:+ 'iy')dtdy'

s

over a single hole. We thus obtailn

,I==4cos’-’%i'(cal+s‘f)' (19)

where the expression C32 + S1° 1s the light intensity of the
diffraction pattern of one hole.

From these formulas, it 1s evident that the diffraction
pattern produced by two congruent holes is simllar to the one
generated by a single hole, on which bright and dark lines are
drawn at right angles to the line connecting the holes. In prac-
tice, only the central disc of the diffraction pattern and the
lines situated on 1t can be seen clearly. The distance between
dark lines is Ab/D, and the distance between the bright lines 1is
roughly the same. The smaller the holes in comparison with the
distance between them, the larger the number of lines on the
central disc of the diffraction pattern produced by one hole,
and the greater the regularity of the light distribution aleng and
close to the ‘central line. The above statements also apply to a
great extent even when the holes differ somewhat. A precise
mathematical analysis of the matter would take too much room,
however.
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The above discussion implies that the two-hole method has /34
an important advantage over the one-hole method (Hartmann's),
namely that irregularities in the shape of the holes and air
bubbles in the objective have very little effect on the dis-
tribution of light on the central llne; the only one concerned
in the measurements, while in Hartmann's method, even a very
slight irregularity in the shape of the holes makes the diffrac-
tion pattern irregular and observation uncertain.

When the holes are rectangles, the ilntegration is very
easy. Let the lengths of the sides of the vrettangle in the
X and y directions be y and &§ respectively. Then

Y osdewkr xyt  xbn
o s sin 8in
C1'='f cosﬁ (Es+qy’)da:dy’ (m) —-—ﬂg-;’-—-T.
e Lt L4 ) :
+36 +1r
. 2m P - .
=:Il; ‘ifs:ni—b—(_E:c+qy’)dxdy'~0. (20)
il A .
myd 1 adny?
sin ik Snib
6f+8f==(")2( e ) ( a2 )
1h . A

We will not examine this formula in detail (ef. [9]). We
observe only that the points at which the light intensity is
zero form congruent rectangles. The light intensity on the
y-axis 1s zero first at a distance Ab/é from the origin.
Earlier, it was mentioned that in the diffraction pattern pro-
duced by two holes, the separation of similar lines is Ab/D.
The number of lines on the central disk of the diffraction
pattern produced by a rectangular hole therefore increases in /35
the same ratio as D/S§.

10. So far, 1t has been assumed that the wave front is
precisely spherical. In that case, the maximum of the 1ight in‘®
the central line 1s always on the x-axis, as long as the holes
are rectangular, and the distribution of the light on boths
sldes of the x-axis is symmetric with respect to the latter.

Of course, this symmetry is retained even when the wave front
is not a sphere, as long as the deviations are symmetric with
respect to the xz-plane. In other cases, it is likely that the
maximum line of the central interference‘band is displaced by
a certain amount from the x-axis, and it would no longer be
immediately evident that the calculatlons could be carried out
as 1n the case when the holes were infinitesimally small. We
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now assume that the deviations of the wave front are of a
relatively general form, and we determine their effects on the
maximum line of the central band. For the sake of completeness,
we also allow for differences in light intensity over the wave
front. Such differences do exist, at least for refracting
telescopes, since the thickness of the objective 1nereases
toward the center. Nevertheless, near a hole, we assume the
light intensity to be constant.

We employ the same type of ccoordinate system as before.
The z-axis 1is therefore the central normal of the segment con-
necting the midpoints of the rectangle. As the origin, we choose
an arbitrary point on the z-axis, which can be viewed as an
approximate focus. The deviations of the wave front are cal-
culated from the sphere with center at the origin and passing
through the midpoints of the holes. In general, the sldes of
the rectangles parallel to the y-axis are very small, so that in
practice, it is sufficlent to express the deviations of the wave /36
front at the holes Lj and L, by the formulas

hy = ay + vy @y \
- a?y' + (0 \

where the two functions ¢; and {y, of both varlables are assumed
to be even functlons of the variable y'. DMoreover, we assume
that hy and h, are small compared to the light wave near the
rectangles.

The distance between the point (&,n) near the origin in
the xy-plane and the point (x,y') on the parts Lj or Ls of the
wave front can be approximately expressed by the formulas

,Snb'+9—"—gy'—-§x+h,, ,
i
8.=b__' by, b:l:-l-fl. ‘

Assume that the light intensities on the parts Ly and Lo of
the wave front are in the ratio pj:ip,. Then, the lig%t 1ntensity
in the movable plane is proportional to the expression

2 2

I = C° + 8%,

where
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Cm [forcos2 [+ 22 (w02} 'Lz 4 ] sy

s ffesor e[ B (a-i)y b + it

S s B+ - =+ )i

S ST A S
e

Since we intend only to discover the position of the
maximum line of the central band, and since we need to know the
latter only in the immediate vicinity of the y-axis, both £ and /37
n as well as, by what has been said previously, the arguments
of the trigonometric functions in the integrands are very small,
80 that we can omit powers higher than the sqguare in the series
expansgion of the trigonometric functiocns. We therefore obtain:

= ffaf1-2 0 B o Yy —br ] Jasar
[ o . ) .
+ffalt-5 B+ (o -p)y—fo+ w]'fazdr.
L : ‘ i
s=ffel"3§[+§£+(§. ~D)y—fz+w)dzdy

+ff"’¥[‘%+ (“s —_E)y'—-ﬁx+ t,b',]d:bdy'.

When we do the integrations, the x-integration extending
between the limits -y/2 and +y/2, and the y-integration between
the limits -6/2 and +§8/2, we find

C=(¢1+9,)yﬂ+e(§)+(}‘?)’[§ (@101 + @y a5) yd* + _
) +2D(—¢ J;f Undzdy +o, ff w,'dxdy')]g ~
. L,
S eanfoe))
S=;[2(el {fwsdxdy'+e,£f Yo dx dy’y + (gl—-g,)Dydg],

where e(&) contalns terms independent of n and small with
respect tc the main term. Furthermore,
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I=C’+S==(9:+?=)’(3’J)’+51(E)+ .
+(% )rf’[ (91+e.)(91a1+9aa=)rd’+8019=D(—ffwxdzdy’+

+ff¢.dxdy')],, =) oy [4e:e:D'+3(ex+o-)'d']( BT

‘.
%

where e3(&) again contains the small terms independent of n.

In order to learn the value of n at which I attains its
maximum, we write dI/dn = 0. If we expand and solve this
equation, we obtaln

((’:+P:)(9.n,+o.u,)an+4p,p. ( ffv.dxdy’+ff np,dxdy')

* ﬂ= - .-‘
b . _ fon D "‘5 (ﬂ"'(’a). s ’ .

This expression can be written in the form

‘q+q+&_ﬂm-n) -
= +

_'_’(D’ _[. .(ari’*l)-]” [“

Pk
—
3
+
>

by using the symbols

h=,%ffwldxdy'=:—affh.dxdy',
L L,
iz.=;‘§_[:[ w,dxdy’ér%‘[fh,dxdy’. = (21)

hence, Hi and Hg are the mean values of the deviations of the
wave front in the reglons L; and L, respectively.

Since, in reality, ps and pj; are approximately of the
same s5ize, 1t 1s sufficiently precise to write

A A 1 (22)

5=F+ T+ {
where
v mem | o _adeT® e Rk |
Ce(fet e T oo
’ 1

/38
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To start with, consider the first term nt/b of the correc-
tion expression. In usable telescopes, oy would not amount /39
to very many seconds even if the most unfavoraéle points on the
wave front were selected and D were chosen accordingly. Since,
for the most part, the wave front has a relatively simple shape
{very often, the residual spherical aberration is the most
important constituent of the deviations), + a5 can reach the
greatest possible value only when D 1is rela%lvely large. In that
case, however, D/§ is also large, because one 1s trying to make
§ as small as possible, and E /b is therefore small because of
the large denominator 6(D/&) . If, for example, D/§ = 1,

n'/b = (a] + a5)/98. Making D/6 smaller does make the denominator

in the expre531on for n'/b smaller as well, but in general it
also makes a3 + oo smaller. One of the smallest values coming
intos consideration is D/8 = 2, so that n'/b = (aji+.04)426. If
e.g. a; + ap = 1", then n'/b = 0.047.

This implies that the influence of the correction n' in
ordinary cases is very insignificant. It can become appreciable
only if the deviations of the wave front are very large. In
such a case, however, there 1is generally no reason to measure
the errors with such great absolute precision as when studying
good obJjectlves. Nevertheless, there 1ls one case in which it
may be desirable to determine large deviations with great
absolute precision, namely when a parabolic mirrcer with a short
focal length is being studied with the aid of an artificial star
placed at the center of curvature. Even in this case, however,
the correction n' is not taken intc account. For one thing, the
deviations increase relatively slowly from the center toward the
edge, since a regular spherical aberration 1s dnvolved. Second,
it 1s easy to provide the artiflecal star wilth such a luminous
intensity that the slits can be made very narrow, without lmpair-
ing the accuracy of the observations, and this makes D/S§ /80
sufficiently large. In general, the observations can be arranged
so that in practice, n' = 0.

Now consider the term n"/b. In objectives, py and p, are
somewhat different, since the middle of an objective is thicker
than 1ts edges. For such a large objectlive as that of the Lick
OCbservatory, this difference 1s only 15 mm, and the corresponding
absorption of the glass is at most 6%, even for light with
chemical effects (cf. the absorption table for optical glasses
in [10]). Recalling that the distance between the sets in
practice is only a fraction of half the aperture of the objective,
it is easy to see that the influence of changes in absorption
1s very small. In reflecting telescopes, pj and po can be
different only when there are spots on the reflector due to
faulty silver-coating. For example, assume that poipy = 105:595,
1.e. that (pp-py)/(potey) = 1/20, and D/S = 2. Then

n"/b = (ag - a4,/520. %1thout further arguments, it can be said
that n" is vanishingly small in practice.
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Likewise, it 1s usually safe to write n"'= 0. Approximately,

w3 -ﬁl .
'?T:_th__. X (24)

Comparing this formula with (3), we can make the following
statement: by the two-hole method, the mean value of the devia-
tions of the parts of the wave front corresponding to the holes
can be determined.

As previocusly stated, this mean value can be replaced by
the deviation in the middle of the hole. At any rate, the cal- /41
culations can be carried out in first approximation under this
assumption, and the accuracy subsequently improved if it should
prove necessary. Enhancing the accuracy comes into consideration
in the determination of zonal aberrations when the slits are made
relatively long in order to..achieve sufficient light intensity,
and when there is a depression or elevation in the center of the
wave front in a small area.

In the above discussion, it was assumed that the holes are
congruent rectangles. If the holes are of different size and
irregular at the edges, so that they. deviate to some extent from
the rectangular shape, this has the same effect, in first. approxi-
mation, as a different p1ie ratio, and therefore does not induce
any appreclable change in the value of n. Moreover, a hypothetical
influence due to holes of different sizes can be eliminated by
rotating the screen by 180°.

It should be kept in mind that the above theory was not
formulated for completeness, since the higher-order terms were
thrown out in deriving the formulas, and since only the position
of the maximum line i1s calculated, without studying the distribu-
tion of light even 1n its vicinity. For instance, it 1s conceivable
that when the light is not distributed symmetriecally on both sides
of the maximum line, the alignment also 1is not precisely on the
maximum line, but systematically somewhat to the side of it.

Of course, this error cannot be calculated theoretically, and
therefore we have contented ourselves with the above simple

theory. After all, its purpose was not to derive formulas by

which the errors could be corrected, but to estimate the order

of magnitude of the errors and then to show that the errors are
vanishingly small in practice. This is particularly true for /U2
the corrections n' and n". As for the correction "', the form
in whiceh 1t was previously expressed in words appears so natural
that it could have actually been guessed even without calculations.
L, i.).p;“,

A study similar to the one just conducted for the two-hole
method could of course be performed for the other methods as well,
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and the results would doubtlessly be similar. However, we do
not consider it worthwhile deriving the corresponding formulas,
especially since the calculations become more complicated when
more heoles are included. We observe only that the result

obtained for the two-hole method -- l.e. that the mean value for
the deviations of the points of the wave front for each hole
are determined by the observations -- 1s easily seen to be wvalild

for all methods.
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IIT. Applications /43

11l. In order to illusftrate the practical application of
the method which I have described for studying objectives, I
will now give a report on the examination of three telescopes
of the Helsinkl Observatory and a parabolic mirror which I ground.
At the same time, I wlll make some observations of a general
nature on the organization of the observations in different cases,
on error sources, on precislion, etce.

The particular instruments of the QObservatory are the
portable transit, the o©ld Utzschneider-Fraunhofer refractor,
and the large transit. In investigating the optics of these
instruments, I employed the two-slit and three-hole methods,
since these are generally the best to use when the instrument is
stable and is equipped with an ocular micrometer. It would also
have been interesting to examine the largest instrument in the
Observatory, the astrograph, but there was no suitable opportunity
to do so, because 1t was tied up by photographle projects.

As an 1llustration of an application of the three-slit
method, I will describe only observations made at home while I
was grinding a parabolic mirror 17.5% cm in diameter., I have
checked the applicability of the four-hole methed only for small
objectives, but did attain quite satisfactory results. In this /44
treatise, I will content myself with just this remark.

At the conclusion of this Chapter, I will make some remarks

onn Michelscn's method and I will mentilon some modifications in
my methods.

Application of the Two-S1it Method to the Small Transit

12. The. portable transit (Repsoldt, 1886) has a bent
telescope, 80 that the images are affected both by the errors
of the objective and those of the prism. The objective aper-
ture is 7 cm and the focal length 75 em. The instrument is
equipped with a very good ocular micrometer which can be turned
through 90°., It can therefore be viewed as a typical example
of a small instrument usable for precise measurements.

In studying the objectlive, 1t is generally better to use
an artificlal star instead of a real one as the light source.
Among the advantages of the former are: an artificisl star can
easily be made bright enough so. that observations can be made
without difficulty even when the slits in the screen are very
small. OFf course, observations can also be made when the sky
is c¢loudy, and they will be more precise than when real stars
are utilized, assuming that the artificial star 1s not too far
away. The observations and calculatlons are simpler when an
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artificial star is used, because the star does not move. The
light from an artificial star can also be made monochromatic,
and this will certainly yield mcre accurate measurements than
when nonmonochromatic light is employed. Moreover, the chromatic
aberration can be determined precisely by varying the wavelength.

I attached the artificial star to a stcone pillar which was
about 50 m to the east of the transit and carried a sighting
mark. In place of the mark, I made a stralght slit a few tenths
of a millimeter wide, which could be turned into the vertical
or horlzontal directions as desired. Behind the slit, I placed
a 50-candlepower frosted electric lamp, when I employed a linear
light source, and a bright 50-candlepower, so-called 1/2-watt
lamp when I required a polint light source. I placed the fllament
of the latter lamp at right angles to the slit. In both methods,
the interference lines were clearly visible, although the slits
in the screens were only 2 mm wide and 6 mm long.

S
o

The screens I produced as follows (Fig. 8).

A round cardboard disk
A was fastened in front of
the objective. In the disk
was a hole BB, the length
of whiech was equal tec the
diameter of the objective.
A sheet CC, made of heavy
drawing paper, and contain-
ing the slits E; and Ep
could be moved back and
forth beneath the paper
strips D1D; and DpDj.
Thus, CC formed a movable
screen. The position of
the slits relative tc the
center of the objective was
Fig. 8. read off the scale FF with
‘ the aid of the index mark
G. The scale had 20 divi- /46
sions numbered from -10 -
to +10. The spacing between two successive lines was 3.3 mm.

__________
F'ﬂ ‘\‘
-I.4hl1ln!n|1!:l.l.l.€?
] )

=)
=

(o]

Since, in the center of the hypotenuse surface of the prism,
there was a depression for field illumination, the observations
had to be organized so that the slit never fell in the center of
the objective. In Fig. 9, the points lylng on the dlameter of
the objectlive for which the deviations of the wave front were
determined are marked. The extreme points (-10, +10) were 33 mm
from the center of the objective or 2 mm from 1ts edge.
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The distance between two
0 % 6 4 4 2 ek § ot . Successlve points was 1P = 3.3 mm.
r||,,,;,|{“}|,|,||||| .~ By using a screen in which the
: separation of the slits was Dy =
= 4P = 13.2 mm, the deviations of
Fi g the wave front were determined at
g- 7 the points -6, -2, +2, and +6,
the deviations at the points =10
and +10 being assumed to be zero.
Based on these observed deviations, the deviations of the inter-
vening points -8, -4, +4, and +8 were found using a screen with
Dp = 2P = 6.6 mm. PFinally, the deviations at =9, -7, -5, =3,
+3, +5, +7, and +9 were found with a screen with Dy = 1P = 3.3 mm.
In the latter screen, the slits were about 1.7 mm wide. With
the ald of screen Dy, therefore, the first-order polnts were
determined, followed by the second-order and third-order points
using the other screens and the results with the first one.

Assume that the horizontal diameter was the one to be
investigated. The movable hairline c¢f the micrometer was set
vertically, and the linear s1it of the light source was made
brecisely vertical, as well as the slits in the screen. The /47
positive reading of the scale FF was set on the side of the
optical axis toward which the reading of the micrometer increased.
The observations were carried out in the followlng order. The
screen Dy was filrst placed so that the slits arrived at the
points -10 and -6. The index mark G was then opposite the -8
line on the scale. For the sake of brevity, we will say that
the position of the screen was -8. The central interference band
was aligned twice with the movable hairline. Next, the obser-
vations were made in the positions -4, 0, +4, and +8, and then
the observations were repeated 1in the reverse sequence. The
observations were continued wlth fhe other screens in the same
fashion, i.e. in pesitions -9, -Y, -5, -3, +3, +5, +7, and +9
and back again with screen Do, and in positions -9.5, -8.5, ...,
-2.5, + 2.5, ..., +9.5 and back again wilth screen D3. Finally,

a second series of observations was made with screen Dy. The
magnification of the telescope was 120 for all obserwvations.

In observing the sighting mark, the value of one screw revolution
was 55.60".

13. In Tables I-IV, I present the cbservations I made on
the evening of March 3, 1921 to determlne the errors along the
horizontal diameter of the objective, the artificilal ::star
being situated at the center of the field of vision.
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TABLE I.

o Dy=4"=132 mm
. I
¥ I' o oo :f ur ﬂf ur { u
=8 | 178156 | 17R161 | 178135 | 178 150 | 178158
-4 [, 20) 230 23 2r| 208
0§ 20| 19 L 2000 199 199
4 184 1887 188 -1so| 185
48 220 224 " 2| 2= m
TABLE II. 48
D,=2% - 66 mm \
r- 5 I e e
¥ u u” 1 u'" L] e o ‘
- 1
n | |
—9 | 178003 | 178100 il 17”102 | 178004 | 17R 007 \
-7 184 170 178 170)] 17|
-5 219 211 229 25 28| |
-3 205 193 20 |- 208 | 201
© 3 182 170, 168 179 [ 1%
45 170 178 164|. 18] 173
+7 226 21| 204 210 215
+9 - 236 2325 230 28] 23
TABLE I1II.
D =17=33 mm )
P J |
[/} o " ¢ [/ u u
§
i ! ! i it
—05- | 178069 | 177060 | 178063 | 177060 || 17R 006
-85 114 1§ 112 121 123
—75- 168§ 155 154 . 14 155
—6.5 180 181 169 196 182
—55 200 220 197 205 201
~45 235 235 242 28 235
—35 230 [ 236 212 225 26
—~25 194 1787 191 165 182
+2.5 170 166 138 1581 - 163
435 i 185 200 192 189 192
+45 164 174 164 170 168
455 166 160 162 174 166
+65 200 215 . 195 195 201
+75 24 209 219 23 219
485 230 | 225 230 229 23
- 1* 495 232 248 250 255 246 |-




"~
o=
O

TABLE IV.

D= 4" =132 mm -

N _ 1 ‘ b i
|

¥ o U [+ u A
‘ o i ’ '
—8- [ 1783150 | 17851 § 178140 | 177147 | 17R147 | |
—4 | 2e 207 218 b, 218 | |
o | 199 199" 199 199 19| |
S me| sy 18| 1) 1w |
48 _ 25 znﬁ‘ 09 258 26 l

-

The position y of the screen 1s indicated in the flrst
column. u' and u" are the alignments when the screen is shifted
in the positive direction, and u™ and u™" are the correspondiiag
alignments when the screen is shifted in the negative direction.
The last column contains the mean value u of the different readings.

On two evenings, March 3 and 9, 1921, I made a total of 16
series of observations of the above type with screen Dy, some
to investigate the horizontal diameter and some to investigate
the vertical one. Sometimes the artificial star was at the
center of the field of wvision, and sometimes to one side. From
all these observations, I calculated the mean error e of an
alignment in a different way. For simpliecity's sake, I computed
it with the aid of the average error. The mean error of the
differences u' - y" and u"* - u™ is ev2. From this material,
I obtained & = £07.00222 = £0.123". TIrom the differences
{u' + u")/2 - (u" + u"™)/2, one finds ¢ = x0R.00309 = x0.172",
l.e. a significantly larger value which can be explained by
possible changes in the instrument, in exaet adjustment of the
screen, ete. It is interesting that from the differences
u' - u"' one obtains e = #0R.00325 = £0.181" and from the
differences u" = u" a significantly smaller value, namely € = /50
= +0R,00259 = +0.144". One possible source of this difference
might be a small change produced in the instrument when the
screen is shifted, a difference which is gradually neutralized
and therefore acts prinecipally on the early alignments. For
simplicity, we glve all alignments the same weight and therefore
consider the mean value (u' + u™ + u"™ + u™ )/2 as the final
value. By the second mode of calculation, its mean error is
found to be gy = &/2 =,iOR.0015H = $0.086" or in linear units
+0.31 um; the screw rotation is 0.2 mm.

In eight series of observations conducted with gcreen Do,
I obtained as the mean error of an alignment ¢ =_iOR.OO452 =
£0.251" from the differences u' - u" and u"' - u""; ¢ =
+0.00528 = £0.294" from the differences (u' + u")/2 - (u"' + u"™y/2.

welb
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With the ald of the latter wvalue ﬁf £, the mean error of the
mean value is found to be ey = £07.00264 = x0.147". From the
two seriles carried out with screen D1, I obtained through the
two modes of calculation described above e = $0R,0082 = £0.46"
or ¢ = #0R,0107 = $0.59" as the mgan error of an alignment,

and from the latter value e, = +0R.0054 = 10.30".

These figures show that the actual alignment error is
inversely proportional to the spacing D between the slits, as
would hawve been anticipated. Namely, 0.123":0.251":0.46" = 1/4:
:1/2:1/1, approximately. In the mean errors €y as well, the
same law holds for the observations made with screens Do and Dy,
but the e, corresponding to screen Dy is already relatively
somewhat larger. This too i1s expected, since the motions of
the instruments and other errors independent of the distance
between the slits have relatively greater effects on the obser-
vations carried out with screen Dj than on the other observations.

In his method of extrafocal images, Hartmann [11] assumed /51
that the mean error in measuring the distance between two images
was about & = 0.008 mm if the images were reasonably good, and
perhaps € = 0.003 mm if they were very good. The first value
agrees wilth the results of Lehmann [12]. In order to obtain
the alignment accuracy of an image, the figures must be divided
by ¥2. If these figures are compared with the mean errors I have
given, it can be seen that the precision obtained with the two-
slit method is many times greater than that achieved by the
Hartmann method. It should also be observed that Hartmann, in
his studles of objectives with an artificlal star, used mono-
chromatic light, while I employed just the nonmonochromatic light
delivered by an ordinary electrical bulb. For this reason, when
the screen was shifted to one side, the distribution of the
colors was not guite symmetric with respect to the central inter-
ference band because of the secondary spectrum. If monochromatic
light had been used, the accuracy would certainly have been even
greater.

14. The deviations of the wave front were calculated with
the aid of formula (3). If, in this formula, we set cosw = 1,
we then obtain

Now n/b = p(u - u), where p is the value in radians corresponding
to one screw revolutlon and u is a mlcrometer reading to be
determined later. Hence, from the measurements taken with the
screen Dy, we obtain the equations
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h-—c—h—-lo=D¢0(u-s‘"E).
h—:"h‘—c =D.e(u--4—ﬁ).
hy—h_y =Die(uy—u), - |
hu'—'f!: = Dye(u,—u), rJ
hto——_’ﬁlﬁ, ‘ =Dc(’(ul—“ﬁ)- ’ f

(25)

We set h_yg = hyg = 0; we then obtain from the above equatilons /52

| E:%(u_,+u_.+u.-_i-u4+ua)-_\ (26)

-

The calculation for the first series of observations is
reproduced in Table V. h' 1s the deviation obtained from the
first series, and h'" that from the second series, while h is

the mean value of the two.

TABLE V.

D=4 =132 mm; D, = 3.56.10"3

— —_— e —— —

v i o [10w-w D.g(u—ﬁ]§ K A A
” - im nm - nm . im
i 178158 | —404 —1d 0 0 ) _0
) s s | cons 165 —144 —169 —156
- - -39 —85 —62
2 191 406 | - 42 .
| S e —37 —69 —53
T 46 ' e —18 85 13 o0
229 . - - -
+10 +236 +84 —1 0 0
. u=17R1984 ’

h' and h" differ sharply. The following calculation shows
that the deviations are not due to observation errors. We é&al-
culate e.g. the mean error en , of the deviation h_p obtained

from a series of observations. For this purpose, we express h_o
explicitly in terms of the observed quantitles u._ Accordingly, /53
we employ the previously calculated value ey = iOR.OOISM as the

mean error of u. We find

: h_'.‘=-,',_.1').0(3-!1-.+3u,‘—2uo—2u;—2u,)w

and hence

L m |

LI =’—/5@-D.esu=ie.0 nin
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Furthermore, en,, = eh_» and hyg = VEDDupeu/B = £5.2 nm.

From the mean errors, it can be seen that the differences h' - h"
are real. The explanation is that the first series of observa-
tions was taken as soon as the pavilion was opened, s¢ that the
temperature of the instrument was somewhat higher than that of

the open air. The position of the movable plane-changed as the
temperature varied.

From observations which 1 made to ilnvestigate the vertical
diameter of the objective with the screen Dy, I obtained

TABLE VI.
e )
¥ N h h |
|
nm nm . nm !
-10 } 0 0 0| '
—6 —233 | -2 i —23 Y
=2 —zi0 | =2 27 .
+2 —300 | —-314 | —307
46 | —213 | —2;8 | —26 1|
410 o o 0 | ll
The differences h' - h" have the samé sign here as in the obser-
vations on the horizontal diameter, but the magnitude of the
differences is of the order of magnitude of the observation /54

errors. It is also evident from the results that the curvature
of the wave front in the vertical direction 1s quite different

from that in the horizontal direction. We will return to this
point later.

15. Exploiting the values obtained with the screen Dy, we
now wish to determine the deviations of the wave front for the
intervening points with the screens Dp and Dj. Before we
describe these calculations, we investigate the form of the wave
front using only the observations made with screens D; and D;.
Since no uniform series of observatlions could be carried out
with these screens because of the llluminating prism, no indi-
vidual deviations h could be determined from these observations,

but the mean values hg‘=_(h;y + hy)/2‘could be.

From the measurements undertaken with screen Do, we obtain
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:

 hoy—h_1o=Dye(u-, —E)'
h—i "‘h—s = D: 9("-1‘_‘1)!

(27)

and from the latter

\

hn ho =1 Dyo(u-s— tig). '\R
hg—hy =} Dye(u_;—uy), '!
Ry{—hy =3 Dye{u_s—uy), 1 (28)

ho ho =3 Dgolu_y—uy).

i

If we write hO = 0, we can cobtain ho, ho, hO, and bo from these
10 8> g, N4 2

0 = @szeu =

equations. As the mean error of h3, we obtain N
2

= 6.7 nm, assuming that €y = iOR.OOEGH.

From the observations made with screen Dl, we obtain in
the same way

ho h10= t Dyo(u_y) “usi); : . £55
hg— kg =} Dy ¢ (0_3} — uyy),
_________ (29)
"g“h: =iDio(u_,—uy)
and ehg = 2Dlpeu = 19.6 nm, assuming €y = iOR.OOSH. For purposes
of comparison, 1t should be noted that e O = +Dupe = 5.5 nm is

obtalneg fromqthe observations made w1th screen Dy, assuming that
0015

If we carry out the calculations for the observations with
these formulas, we obtain the results collected in Table VII.
They are recorded in the table in the same order as that in
which the observations were made. The observations made with
screen Dy are also included.
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TABLE VII.

® hg
Horizontal Diameter ' Vertical Diaméber
: ; : ; :
| g | P) | (D) | (D) D) D) (D) | D) | D)
| nm m | nm ! nm ' nm nm nm |ynm |-
.10 0]. o ol ej of o 0 0
9 ! : =80 ; - | =106
3 —120 | —127 ! ;‘ ‘170 | —178
7‘i R . D —225
6| —1t4 | Z155. ] —164 | —141 | —253 ; —262 | —262 | —256
5 ‘ —148 | —304
Lo —115) —119 I i 310 | —321
{3 | =104 y . | —328 ,
| 27 —s 1 —s2| —861 —77.] —285 208 | —314 | 206 |

Hence, there appears to be a small systematic difference
between the results obtained with the different screens in
the measurements of the two diameters. It 1s not hard to see /56
that the errors due to the finiteness of the slits are vanish-
ingly small. The cause of the systematic differences is
probably an effect of the secondary spectrum. Namely, the
central interference band ls not symmetrle with respect to the
colors, except when the slits are symmetric with respect to the
center of the objective. The asymmetry increases linearly as
the screen is moved toward the edge. Since changing the screen
modifies the thickness and separation of the interference bands,
it is probable that systematic alignment errors, which grow
roughly linearly with y, are produced when different screens are
employed. Upon reflection, we can see that the effects of such
gystematic errors would be the same as those produced by shifting
the movable plane. Hence, they will have no great influence on
the form of the zonal aberrations.

We will now show how the observatlons made with screens Do
and D are used to defermine new points between the points
-10, =6, ... found with screen Dy. From the observations made
with screen Do, we easily obtain

h—a=i(h—1o+h—a)+.§ Dz-E’(u-a“.u—-v). i
_h-{:%(h—s'f'h—z)'i‘:ED:Q(U—s“TU—-a),-‘ | (30).

— — e —
—— e . e e o ——
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The mean error in the deviations h_g, h_y, .... resulting from
the ObSEPVﬁthHS with the screen Dg 15 (/272)Dgpsu = +3.3 nm,
if gy = . 00264,

With screen Dy, we obtain 1in the same way

h—OEAl (howot+h_o)+ ) Doty —u—sj), J
fh—'a' (hoy+h-)+ D e (Uoaf—U_s))s -

_-——-——_———-—-————-—.

(31)

The mean error for the deviations h_ resulting from
the obsgrvatlons with screen D; is (/?72)61psu = +3.4 nm, if
ey = 0. 0054,

As we have just seen, there 1s a systematic difference
between the observatilions made with different screens. We now
investigate the magnitude of the errors which would result if
we employed the formulas derived above without redueclng the
observations made with screens Dp and Dy to the same system as
the observations made with screen Dy. hen the horilzontal
dlameter l1s studled, the difference between the values hg found

with screens Dy and Do is equal to -34 nm. For simplicity, we
assume that this difference corresponds to the center of the

objective., This difference 1s produced when the entire diameter,

i.e. 20P, is measured independently with both screens. If, by
means of the screen Dy, new points are determined half way

between the polnts found with the screen Dy, only a fifth of the

diameter, i.e. 4P, is taken into account. The systematic cor-
rection is then, as is easily seen, =-34/25 nm = -1.4 nm, and

thlis can be neglected. 1In observations on the vertical diameter,
the systematic difference is much smaller. Finally, when deter-

mining new points using the screen Dy, only 1/10 of the entire
diameter is taken into account, so t%at
to be applied to the new points would be only 1/100 of the

systematic difference which would be produced near the center of

the systematic correction

/57

mir——

the objective if the entire diameter was investigated 1lndependently

with screens Dy and D;. By neglecting the small systematic cor-

rections, we obtain the deviations in Table VIII from formulas
(30) and (31).

We have already emphasized the great differences between
the deviations on the horizontal diameter and those on the
vertical diameter. Therefore, the objective-prism system is

highly astigmatic. The above observations are not, however, well

suited for a precise determination of the magnitude of the
astigmatism, since the time during which the observations along
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TABLE VIII.

~
o

Horirzontal Diameter {Vertical Diameter
¥ h—ll' h+v . hg . h-v h+ﬂ h'

, * Tim nmo | - nm nm nm nm

10 0 0 0 0 o-| - o0
9 |--»o | 90 | -0 ] -8 | . —118 | —100
"8 —HM8 —64 —106 —-153 | —181 —167

7 1 -163 —89 —126 —199 —234 —216

6 | -15 —99 —128 | —234 —276 —255

5 —141 ~85 —113 —260 —317 -2 |
4 ~94 | —74 ~84 § -288 | —319 | 304 ||
-3 ~58 —76 —67 — 290 —325 —308

2 -—82 —53 —58 | -—-214 . =307 —2%

the horizontal and vertical diameters were made was about an

hour, so that a change in temperature could have had an appreclable
effect on the curvature of the wave front. Therefore, I deter-
mined the astigmatism later by means of special observations.
Another feature attracting attention is the asymmetry in the
deviations of the wave front relative to the center of the objec-
tive, an aberratlon known by the name of coma. This aberration
will also be treated in more detail later.

16. We now consider the actual zonal aberrations. The
deviations of the wave front calculated so far depend on the
position of the movable plane. They can be made invariant under /59
displacements of the movable plane by determining the reference
sphere in such a fashion that the corresponding deviations will
also be zero at a third point. If possible, the center of the
objective 1s chosen as this poinft. Since, with the present objec-
tive, the center is out of the question, the reference sphere is
determined so that hg = (h_, + hy}/2 = 0.

Let the distance from the mowvable plane to the second
principal plane of the objective during the measurements be b.

If the center of the reference sphere lies in the movable plane,
let the deviation from the reference sphere of the polnt y on
the meridian section of the wave front be h. We now shift the
center of the reference sphere outward from the objective by a
distance Ab. If we assume that the point of the reference
sphere on the optical axis remalns unchanged, it is easy to
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deduce that the deviation h increases roughly by -y°Ab/2b°
because of the displacement of the center of the reference
sphere. The deviation of the_point y on the outermost zone of
the objective  increases by —y%&b/2b2; Since the specified

deviation will continue to be equal to zero, we add y Ab/2b2
to all the deviations, and thus obtain the following gormula
for the change in the deviation at point y.

!

Bh=gp @2 — ). X (32)

From the observations along the horizontal diameter, we

obtained hg = ~58 nm. To make this devlation zero and to keep

hgo equal to zero, the term

l\
o)
o

58 =5 = + 0.604 (100 — y')

1s to be subtracted from the deviations. Likewise,

+290 0= — 4 3.020 (100 — ).

is £o be subtracted from the deviations for the vertical diameter.

These reductions are applied to the deviations hg = (h -y + h /2.

The resulting sums, which we designate zy, are the actual zonal
aberrations.

Table IX shows the zonal aberrations calculated from the
values for ho in the preceding table in columns (Du, Do, Dl)

O0f these, only the measurements made wlth screen Py were involved
in the determlnation of zg-

The observatlons made with screens Dp and D) can also be
employed independently for determining zonal aberrations. For
this purpose, we need only to apply the reductions to the values /61
in columns (Ds) and (Dl) in Table VII. The resulting zonal
aberrations are found iIn columns (Dp) and (D7) in Table IX.

The zonal aberration zg was determined independently with
all three screens. We calculate 1ts mean error in each of the
three cases. For this task, we express zg explicitly in terms
of the observed gquantity u. For example, for Dy, we find
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TABLE IX.

2y
Horizontal Diameter Vertical Diameter
: - l_'l ' o | T
y (D.D,D\} (Dy) ) E ( GDIQI). - ADy) | - (D) [ \
Snm po onm o, nm nm nm | nm |
10 0 o |, o o {- 0 0
9 —39 L 61 —43 | - ~
3 - -84 —86 -1 —58, —58 '| -60 ;\
7 —95 —105 —62 © —58 i;
6 —8 | -4 -1 -62 | -63 —53 | |
5 —63 -moj -6 - 59 ’ |
4 -33 —H | -3 —-50 — 40 —48 !
3 =12 —13 -1 ooc ol =30
2 0 0 0 i .0 ) B

i
|

= z.'=%D.e'(u__,—2u._.+2u.—_u.). .

The mean error of zg 1s consequently

o= Y Digra=£2.9 1. /

Likewise, in case Dy, we obtaln

f%n%ﬂ,g}u=i3,5 Crm |

and in the case D1

& = K;_Q Dyge, =+ 3.1 nm |
: f

In each of the cases, the values of g, mentioned on pp. 33-34
were used.

If we compare the values obtalined for the zonal aberraticns

with different screens, we notice that the deviatlons can be
explained by random observation errcrs. We take the values in
column (DyD»oDj) as the final values.
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There is an appreclable difference between the zonal
aberrations obtained from measurements along the horizontal
and vertical diameters. It seems very likely that this dif-
ference, like the marked astigmatism, is due to the prism and
not to the objective. In order to clarify this situation, on
March 9, 1921 I determined the deviations along the horizontal = /62
and vertical dlameters using screens Dy and Dy, after first
screwing out the objective by 90°. . Then I made new observa-
tions, after having screwed the objective back in. Table X
contains the zonal aberrations obtained from these measurements.

TABLE X.
\

Objective ge Objective-ge |

] ]

y HOﬁz-IVertic."Uﬁl-iVertic[\
~ nm hm- | nm nm
10 - 0 "o 0 0
. —80 - 67 —90 | -55
.6 | —7a &1 | -8 —57
4 —26 —~54 ; -7 —48
2 0 o ! 0 0

From the table, it 1is evident that the difference between
the zonal aberrations obtained from cobservations along the
horizontal and vertical diamefers are primarily due to the prism.
Nevertheless, there appears to be a certain difference attributable

to the objective.

We can express the magnitude of the astigmatism by the
formula

a = hg(horiz.) - hg(vertic.).

I obtained the following values for this expression.

TABLE XT. /6
|
- . |
. Objective 9* Objective d® f
3 ) [ - AluL‘ -‘_ -
- . .Horiz. i\%rﬁcﬁ Horiz. | Vertic. {
nm | nm { nm nm I- g
hy L o414 | -3 1) —106 | —200 l !
4184 l

a - | +169 ;
. - L}B



Within the limits of observational errors, therefore, the
astigmatism did not change when the objective was screwed out.
Hence, the primary cause of the astigmatism must be sought in
the prlsm

On April 7, I again determined the astigmatism, using
screen Dy. From two measurements on the vertical and horizontal
diameters, I obtained a = +194 nm. We calculate the displace-
ment of the movable plane correspondlng to this value. We
substitute yg = 10P, y = 2P, b 230P (= 761 mm) in formula (32).
We find ab =_1103 Ah = +0.207 mm. According to the observa-
tions on the horizontal diameter, the movable plane therefore
1les:0..207 micloser to the objective than indicated by obser-
vationssalong the vertical diameter.

17. We now consider the asymmetry of the wave front. At
a distance y from the center, its magnitude 1s determined by
the expression Cy = (h - )/2, which we call the coma. From
the following measurements aiong the horizontal diameter taken
on March 9, it can be seen that the coma depends on the position
of the star in the field of vision. The position of the star
is 1ndicated by the micrometer readings u given at the top of
the table.

|

TABLE XII. /
y u =51 . u=16f9 . u«30"6
hy Cy h, Cy h, o
N R 1 (Y - nmo nin nm . nm nm
—~10 S 1 0 ) 0 !
-8 | .. 206 S Y BN B T —80 ;
=6 7| -2 —185 |- t—107 |
—4 | —199 - ~125 s -7 |
T =2 1 -1 —111 -7 |
+2 = - —102 A —110 - |° —16"
+4 —114 | 442 —1t4 +6 —135 -30
+6 —84 +90 —128 +2 | -184 | —38
43 -50 478 —90 +40 ~ 14t —30
+10 ol o 0 0 0 .0

We wish to express the magnitude of the asymmetry of the
wave front by a.single number, so that s among the numbers c
we choose the central one, i.e. cg. The fOllOWlﬂg table contalns
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the values cg which I found from my observations with screen Dy
on March 16 for the horizontal diameter and on March 21 for
the vertical one.

TABLE XIII.
b ———————— = _'__—"‘_'_-—"":
_ Horizonta! Direction- %Vertfbal Directioﬁ \

Micr. ~ " I : 'I T l ' ‘

ﬁeading‘ u ” 28| 115 17.4243| 313 344, 27/ 81| 168, 255, 326
Obs.. ¢, ....+100(+60|+26] —6|—36|-—-53!42| 6| 26! —53|—65
Calc. ¢ .04100|458 (4301 —4|—38] —53145| —8| —29| —40|—66 |
obs.-Calc.! - of 42| —s|—2| 42| of-3|+2| +3] —4| 41.

The following linear formulas represent the observed cg
very well. €ch is the mean error of an observation calculated

calculated from the remaining errors.

2.6 nmn.
+3.6 nm,

Horizontal direction 114 - 4.85 u, Scg

11 - 2.36 u, el

g
g

Vertical direction

On the other hand, we obtain €cg =

If, in this eguation, we substitute the
errors given above, i.e. ea, = 3.1 nm,
i1.e. roughly the same value as found on
remark that in the coma observations, I
instead of four at each position of the

(/§6710)D4p5u = 0.

00195eu.

mean value of the mean
we obtain e, = 20R,00159,
pw. 33 . I should also
made only two alignments
screen.

From the above formulas, we find that the position at which

the coma is egual to zero is not in the
vision.
¢g = 0 when u = 23R.5, and accgrding to
vertical direction, when u = 4,7,

center of the field of

According to the formula for the horizontal direction,

the formula for the

On_the other hand, the
center of the crosshairs is roughly 18E,
that the optiecal system is poorly centered.

These numbers mean
The fact that there

1s any coma at all in thls optical system, a coma changing
linearly with u, shows that the sine condition is not satisfied

in the objective-prism system.

The only peculiar feature is that

the coefficlent of u in the formulas for the coma obtalned from
observations along the horlzontal and vertical diameters is

quite different.
this effect..

In early 1922, I removed the prism
with the ald of Newton's rings.

Effects in the prism must be responsible for
I did not investigate thils behavior any further.

and examined its faces

I employed a glass slide, having
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previously determined the deviations of 1ts surfaces from the

plane. According to my observations, the hypotenuse face of

the prism is a convex spherlecal surface with a radius of 1.66 km.
This explains the high astigmatism of the optiecal system.

Namely, thig curvature on the hypotenuse face corresponds to

an astigmatism of a = +153 nm according to my calculations, 1.e. AQQ
roughly the same as that whieh I found on p. 43 by the two-slit

method.

As mentioned earlier, the light source in my observations
was an ordinary electrical bulb. The effectlve wavelength 2
of the light can be determined by measuring the spacing of the
interference strips. Let up - uj] be the distance between two
successive interference bands, expressed in terms of screw
revolutions. Then » = Dp(us ~ uj). With screen Dy, I obtained
by measuring the separation of the -bands -- first with the
central band -- A = 569 nm, with screen Do, A = 555 nm, and
with a grating in which the separation of the slits was 1P,

A = 577 nm.

Application of the Three-Hole Method to the Small Transit

I used the three-hole method only for investlgating astig-
matism. In the screen (Fig. 10), there were 12 round holes
0, 30, 60, ... roughly 4 mm in diameter spaced around a circle
of radius 30 mm with its center at the center P of the objective. /67
Outside the circle, there was a

0 } concentrie cirecle of similar holes

130 O 0 15, 45, 75, ..., which formed
O O gquilateral triangles with the
W15 é0 ‘ first set of points, as can be
300 3,500 O o o - j seen from the diagram. The sides
;- are 15.54 mm long. The hole 0 was
2550 P Qs Ose ' arranged so that it was directly
2550 Qus i above the center of the obJectlve.
o 0O ;‘ A second disk, which could be
23O O 0 " O ! rotated about the point P, was
.o I s ' placed on the screen. There was

e C%w a trlangular aperture in this disk,
ﬁCg so that when the disk was in the
appropriate position, light could
pass only through the holes 0, 15,
Fig. 10.. 30 or 30, 45, 60 etc.

The observations were made as follows. A point-like
artificial star was used. The ocular micrometer was first
adjusted so that measurements could be taken in the vertical
direction. The disk was rotated so that light passed through
holes 0, 15, 30. The central point of the interference pattern
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was aligned with the movable halrline. Let the micrometer
reading be u‘l . The disk was then turned until holes 30,

45, 60 were 51gultaneously visible. A new alignment was
carried out, the micrometer reading of which we designate u'ysg.
Continuing, an entire revolution is made in this way. Then,
the observations are made all over again in the reverse direc-
tion, resulting in the readings u". The final reading is taken
to be the mean value u = (u' + u")/2.

Then, the ocular micrometer was turned through 9Q0°, so
that measurements could be taken in the horizontal direction.
The observations were made as above. To distingulsh them from
the preceding ones, we now designate the micrometer readings v
and employ the same indices as above.

In Table XIV, I reproduce the entire series of observations
which I made on March 15, 1921 to determine astigmatic aberrations.
The position of the disk is designated by a.

TABLE XIV.
Measurement in Measurement in
Vertical Horizontal
Direction Direction
« o u" u 'l v v v

{ ‘ '
<150 | 167860 | 16%s66 | 16%ss3 § 17Ro22 | 17Rme3 | 7Roz
45 | . 853 860 86 ¢ 02 025 05 |
75 821 825 8Bl 05| 0% o8
105 805 804 804 | 040 Mg | od
135 784 782 783 ¢ .03t | - 035 034
" 165 775 7H 7 0| con 020
195 785 781 783 035 040 038
25 798 04 79 | 033 L0353 036
255 814 810 ; 812 030 © 028 029
285 820 821 820 020 020 | 020
315 816 819 | 8318 029 23 0
345 868 ! 868 868 036 | 038 037
i = 16819 =17 032

On April 15, I made a gimilar serles of observations. From
these series, I obtained +0R.0032 = +£0.18" as the mean error of
an alignment by using the differences u' - u" and v' - v" and
e = 07,0023 = £0.13" as the mean error of the means u and v,

47

~
L)\
co



or in linear units, +0.46 nm. The allgnment accuracy is there~
fore roughly the same as Iin the two-slit method using screen Dy.

19. We now show how the deviations hg, hags hggs ... of
the wave front for the points 0, 30, 60, ... cin be calculated
from the observatlons. As the center of the reference sphere,
we choose the point in the movable plane corresponding to the
average micrometer readings u and v. To designate the positions
of the holes, we use an orthogonal coordinate system with the /69
origin at the point P, with the x-axis upward, and with the y-
axls to the right. Let the coordinates of the two holes in
the screen be (x7,y;) and (%X5,¥2) and let the deviations of the
wave front at these points be hj and h, respectively. Let D
be the distance between the holes and, as before, let p be the
value of a screw revolution in radians. If we imagine that we
first proceed from the point (xj3,y) of the wave front in the
direction of the x-axis along the }ight front to the point (X5,y71)
and from here to the point (x2,y2) along the y-axls, we obtailn
by applying the basic formula of the two-slit method twice in
succession:

. |
b~ b= (s —z) (0 — D +e s —y) 0 — D). | (33)

Applying this formula at points 0, 30, 60, ..., we obtain the
formulas

haa""h‘ =' '_DQ Sin 150 (uli—a).-l- Dg 005150 (Dls_E)p \\
hgn - h|° = D e Sin 450 (u‘s - E) + D [ cos 450 (v(g - 5), \
— e e e e e — - \ (34)

hoso ~ hygo = — D g sin 3450 (1135 — &) + D 08 345 (0345 — 5), |

where
Dp = 0.00419,

Because of the observation errors, it is only in exceptional
cases that h3gp = hg. The correction for the terminal error
hagg - hg is distributed uniformly over the deviations h of
tge intervening points, and the corrected deviations are desig-
nated by h'. The mean error of the differences h;ﬂ_f hgs heg - hzp,
.+. 18 Dpe and hence the mean terminal error is 12Dpe =
= 433 nm, assuming that ¢ =,¢OR.0023;

The calculations for the above observations are shown in
Table XV. In the table, hg = 0.
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TABLE XV.
=T = ~
: — = " B -
i £y — ] . t
. ) t in = = °
w k) 2 ! = ! h < U
= = | a =
T 2| 31| % ]
Tla - |
i
nm nm '’ ‘nm nm |nm nm
o] Tl iu| 10 8w, 8| 2 °© 0
1 4y | +H | — —8] = —88| +1 | —87}
il B R AR R T Rt OO I DA
B gy | HEIHG ] 16 41T ] L e | g
05 | o0 | =15 f 412 4611 —13 | +48 —170] 42 | —18!"
135 |- 150 -—36 +2 1 4107 -6 | 4101, —60 ! +3 —G6
165 —45 | =12 | 449 449 | 498 o |
" 180 +20 | 44 | 43,
195 1 gp | T 6] Sy 20 -6 a0 ] S0
05 —23 | 44| —68}| —-12 | —80 )
~ | 240 14 45 [ -109] |
235 . —71 -3 —28! 43| -2 ° :
270 —139 ] 45 | —1Mi
5 | g | FLy -2 b B0 =00 el e | i
315 | g |42 | =6 w6 ;18 | s | T YO T
H5 360 +49 +3 . +53 : +20 +73 -7 | +7 0!

In my second series of observations, the terminal error
was +4 nm.

To the devlations h', we can attach the linear correction
term Ax + By + C, because this Just shifts the center of the
reference sphere 1n the movable plane to another position, and
increases all deviations by the constant C. We can then choose
that expresslion so that none of the points in question on the
wave front acquire a preferred position. We content ourselves
with supplementing the corrections h' by linear corrections so
that the devliations at points 0 and 180 are zero, and the
deviatlons at points 90 and 270 are equal. The new deviations
we designate h¥. In Table XVI, this calculation is carried out
for observations which I took as examples. The table also
includes results of a series of observations made 1 month later
in normal form, and the mean value of the two series.

From the table, it can be seen that the maximum curvature
of the wave front is located on the horizontal axis and the
minimum curvature on the vertical axis. The astigmatism is

'

o
=5 (kY + Rg) — 5 (K + B,) = +187
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TABLE XVI.

TR e 165(1— ] T E .
1 e 0| | wot |Mean | X | L%
I Iy he & =2
a |° N h-hn ; 'T ]
nm- nm nm nm - nm onm nm
o° 0 0 (I 0 0 -0 0
30 —87 | +18 -9 —% —77 —47 --30
60 -8 | 427 | =101 | —191 | —191 | —140 —51 |,
00 | —216 | 425 | -1t | —182 @ 47 | 187 | ° 0
120 —168 | 410 | —138. [ ~147 | ~172 | —140 —32
150 —66 | —1t —-77 --86 ——82 —47 —~35
150 +33 | -33 0 0 0 0 0
210 30! =51 ] —.1 | —79 | 8 | —4 —33
210 | —109 | —60 | —169 | -174 | —172 ! —140 -32
270 | —134 | —57 | —1m1 | —183 | —187 | —187 0
300 | -2 —43 | -G D 187 | 180 1 —m0 | 46
- 330 | —mf —os o110 —103 : —47 —56
! 360 0 0 0 0 0 0 0!

The mean error of the value of a obtalned from_the series of
observations is (vV3/2)Dpe = 8.4 nm, if ¢ = +0R,0023. However,

thls astigmatism parameter cannot be compared directly with

the value of a = +194 nm obtained on p. U44}.since these points /72
on the wave front do not lie exactly in the same zone. The
astigmatism of +187 nm corresponds to the focal difference of

+0.241 mm,

If the astigmatism were entirely due to the spherical shape
of the hypotenuse face of the prism, hY would be proportional
to the expression sinf«. The expression —187sin2a listed in
the seventh column of the table has the same values at points
0, 90, 180, 270 as the deviations of the wave front. The last
column shows that the differences between the observed values
of hU and those calculated by the formula exhibit a rather
regular behavior. I did not attempt to discover the source of
these regular deviations. I only wish to remark that the wave
front must have further deviations beyond the pure astigmatism
proportional to the expression sinza, since this optical system
is poorly cenftered, as the previous investigation of the coma
indicated.

The 01d Utzsechnelider-Fraunhofer Refractor

20. The diameter of the objective 1s 17.5 cm, and its
focal length 1s 288 enm. The instrument is equipped with a
position fillar micrometer, and one screw revolution corresponds
to 23.33" in stellar observations.
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I first attempted to determine the zonal aberrations of
the objective by the two-slit method, observing the pole star
on several evenings. The distance of the outermost observed
zone from the center of the objective was 75 mm. I did not
Place any slits close to the edge, since the fleld illumination
mirror at one sighting angle would have obstructed the passage

of the light. One scale division on the screen was 1P = 6,25 mm,

S0 that the distance from the cutermost zone to the center was
12P, Primarily, I used two screens in which the spacing of

the slits was Dy = 4P = 25 mm and Dp = 2P = 12.5 mm. The width
of the slits in the former was 8 mm and in the latter 6.5 mm.
In both cases, the slits were 30 mm long. I made a few experi-
ments with a screen with slits Dy = 1P = 6.25 mm apart and

only 3.5 mm wide. However, with such small slits, the star was
very difficult to perceive. The field illumination in the
instrument is very weak. Magnifications between 120 and 300
were used in the observations.

For many years, the refractor has been used exclusively as
a training instrument, and 1ts mounting 1s no longer in good
condition. Although the greatest caution .was taken in moving
the screen and in turning the micrometer screw, there were
occasionally major shifts in the position of the telescope,
so that a whole zeries of observations had to be thrown out.
The observatlons were always organlzed so that the first and
last alignments were made with the screen in the same position,
so that I would be able to tell whether the instrument had moved
appreciably in the course of the observations. Because of the
unsteadiness of the instrument, the measurements taken as part
of its inspection were naturally not as accurate as those which
would have been obtained in examining a first-class Ilnstrument.

Using the pole star, I determlned the zonal aberrations in
three directions, at the angles of sight 0°, 60°, and 120°,
corresponding to the readings P = 108°, 168°, and 228° on the
position compass. Suppose -that an observation was to be
made with screen Dp. The star was positioned in the fileld of
vision so that 1t would pass roughly through the center of
the field of vision after about 4 min. The screen was placed
at position -11, the movable hairline near the image of the
star, and the transit of the central interference band through
the movable hairline was observed by the chronometer. Then an
observation was made in each of the positions -9, -7, ..., +11,
followed by the same obhservatlions in the reverse order. One
series of observations lasted about 8 min. The screen was moved
by an assistant. 1In studying the P = 108° diameter, the star
moved along the movable halrline, aso the observation was natural
carrled out by turning the micrometer screw. Using screen Dy,

I made observations twice back and forth wlthout interruption.
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The calculations for the observatlons were performed as
follows. During the brief period of time occupled by the
observation, the motion of the pole star perpendicular to the
movable hairline can be represented by the expression

ut = a + bt + ctz,
where u' is the micrometer reading corresponding to the pole
star, £t the time from a moment near the middle of the ohser-
vations, and a, b, and ¢ constants. If u' is subtracted from
the observed micrometer readings, the remainders differ among
themselves by amounts which depend only on the deviations of
the wave front and the observation errors. In practice, I
allowed for the motion of the pole star only by calculating
theoretically the effect of the term ct2, and derived the linear
expression a + bt from the first and last observations made with
the screen 1n the given position. Finally, I took the mean
values, designated by u, of the reduced micrometer readings
corresponding to the same positlions of the screen.

The final values of u are ascertalned from two l1ndividual
observations when screen Dp is used and from four when screen
Dy 1s used. Therefore, the mean error e of an alignment can /75
be calculated from the deviations of the different observatlons.
On March 23 and 26, 1921, I made a total of eight series of
observations with screen Dy, and obtained e = 07,0137 = X0.32"
as the mean error of an alignment. From six series of obser-
vatigns with screen D on March 18 and 26, I obtained e =
= £07.0119 = 20.28". The accuracy achlieved with the two screens
can be viewed as identical on the basis of these observations.
We use the value ¢ = 20R,0128 = +0.30" for both screens. As
the mean error of the values u, we find in this respect gy =
= +0R, 0090 = 10.21" or £2.9 um in linear units, in observations
with screen Dz; when screen Dy was used, e, = +0R, 0064 = 20.15"
or 2.1 ym in linear units.

The deviations of the wave fronft were calculated from the
mean values u in the same way as for the objective aberrations
of the small transit. Now, we can naturally determine the
deviation of the wave front in the center of the objective as
well. From the observations with screen Dy, we obtain the zonal
aberrations e.g. from the formulas

h?2=0:

__h: =h?2+%D49("—m“um)'
hg '"_‘h: +%D49("--s"ua)’
B =B+, Doy —u),

(35)
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2,=0,

\
.za=hg_gh?]’ J!
7 =B-3K. (36)
B=0

L. l
as long as we don't wish to‘firstxdétermine all deviations hy /76
separately by using formulas corresponding to (25) and (26).

Tables XVII and XVIII contain the zonal aberratilons of
the objective which I determined on the above days with the aid
of the pole star. Since no appreciable differences were found
among the zonal aberrations determined at various angles of
sight in any of the series of observations, I took the mean values
separately of the observations with the two screens. The mean
errors listed under the mean values were calculated from the
remaining errors, and the mean error of a zonal-aberration obser-
vation was found from the same numbers and is listed in the rows
labeled e, (afterward). The mean error ey (before), on the other
hand, was obtained via the following formulas from the mean
error ey assumed in the paragraph preceding the previous one.

D.=#; &, =& =E3Doe, =0.638D,¢6..

Dl = 2P; !’IO = Ezt = 15;“61_3 Dzeeu - 0‘689 Dg?ﬁu
- (37)
E" =‘£z‘ = _li;_lfii,-_}-,-l—) D.‘géu = 0-903 D!eell'

&, = V?‘}?ili D,pe,=0.968 D,ge,. |

The mean errors of the observations made with screen Dp

before and after correction agree very well, while the mean
error from the deviatlons of the final results of the observa-
tions made with screen Dj is smaller than that obtained before

the correction.

Since the slits in the screen were relatively long -~ 30
mm -- we cannot immediately assume that the average deviatlons
of the parts of the wave front corresponding to the slits will
be the same as the deviations of the wave front at the midpoints /78
of the slits (ef. p. 26). Based on the curve whieh I had T
drawn 1in accordance wilith the zonal aberrations obtained with
screen Dp, I calculated the differences:

h in the center of the sllt, minus the average value of h
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TABLE XVII. /11

%y

D=4 -25mm; 1,=2=0

Date . P =8 | y=4
nm nm
-ML21 ] 1080 -62 | —26 |
. .1 —54 —-34
S —59 —43 '
Y -48 | -3
»,21 —62 | -1 |, :
w21 | 168° -54 —34 i
Ty, 2% —52 | —36 S
Sl,‘zl g0 . —60 —41 . ‘
Mean —36 -38 | i
Mean error _+18 +3.0 T
& (aft.)| +51 184
© e (bef,)| *115 | +1i5 .

TABLE XVIITI.

g
Dy=2=125mm; z,=2,=0
—_— ——— —ee
! .
Date: ; P y=10 ; y=8 i y=0 ! y=4 y=2
m ;  nm : nm 5 nm nm
", 108° —-82 -8t ! 72 _y9 —14
w2 ' —60 ~32 1 14 +1
. . —68 | 72 I -0 | -85 | —p J
. 1680 —60 —61 —68 —56 —13
1, 21 2280 -53 |+ —63 , —52 —40 -2 /
14/, 21 _ —58 —53 — 352 —47 =t | |
Mean . —64 | 65 | —54'| _gp —11
Mean error 441 | 440 | 458 +6.0 431
e(aft.) | 4101 | 399 | 4143 | 417 | - 475
£y '(bef.-i 487 | +115 | $123 +115 387



and found values of -5, -2, 0, +1, +2, +5, +5 nm for this
difference at the points y = 12, 10, 8, .... If these values

are reduced 80 that tThe corrections at the points y = 12 and

Yy = 0 are equal to zero, the zonal aberrations then take the
corrections 0, 0, -1, -2, -2, 0, 0 nm, and they can be neglected.

21. Besldes using the pole star, I also determined the
aberrations of the objective using an artificial star. I employed
a point-like light source throughout. I produced this source in
the manner described previously. The light source was in the
window of a building 260 m away from the objective. The spacing
of the slits in the screens was the same as before, i.e. Dy =
= 25 mm and D, = 12.5 mm. Moreover, I determined the zonal
aberrations for the edge of the objective with the screen Dy =
= 6.25 mm. In all the screens, the slits were only 3 mm wide
and 15 mm long. The interference bands were quite clearly
vigible.. In observing the_artificlal star, the angular value of
one screw revolution was 1R = 23.07".

I determined the deviations of the wave front along the
diameters of the objective corresponding to the readings P = 0°,
30°, 60°, ... of the position compass. The screen was shifted
from the negative end of the diameter to the positive end and
back, and an alignment was made after each dlsplacement of the
screen. Eaeh u was then the mean value of two alignments. From
the difference between the alignments assoclated with the same
position of the screen, I calculated the mean error in an align- /79
ment. From the six series of observations conducted with screen
Dy on April 9, and from the 12 conducted on April 11, I obtained
e = 20R,0119 = £0.27" as the mean error of an alignment, and from
the 12 on April 10 with screen Dy, e = 08,0088 = £0.20". The
mean error of the mean value u is therefore g, = £0R.0084 = $£0.19"
for secreen Dy and ey = x0R.0062 = £0.14" for screen Dy.

The precision of the observations 1s therefore greater than
for fhose with the pole star, but appreclably less than that for
observatlions which I made in studying the small transit with
screen D = 13.2 mm. The lower precislon in comparison with the
latter observations was due not only to the unsteadiness of the
refractory but also to the fact that the artificlal star used
in studying the refractor was not as stationary as that used in
studying the small transit. In traveling from the artificial
star to the refractor, the light cressed a building not far
above 1ts roof. The bulilding was heated by day, and thls exerted
an unfavorable Influence on the images. One reason for the
fact that the precision obtained with screen Dy was substantially
less than that with screen Dy was obviously that the series of
observations with the first screen were twice as long as those
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with the latter, so that the motions of the instrument were
greater 1in the former series. In some serles, there was a
clearly systematic behavior to the differences between alignments
corresponding to the same position of the screen, a behavior
originating in the motion of the instrument. A series of obser-
vations in which this difference amounted to almost 2" was
repeated.

Table XIX contalns the zonal aberrations calculated from
the observations with screen Dp. I have placed the zonal aber-
rations obtained from measurements along a given diameter iIn /80
one group, and put the mean values in the last row of the group.
The values in the first row of each group are from the obser-
vations on April 9, and the remaining ones were found from the
observations on April 11. The diameters P = a and P = « + 180°
are naturally the same, so that the zonal aberrations correspond-
ing to them can be directly compared with one another.

_ At the bottom of the table are found the mean error s, (aft.)
of a zonal-aberration observation derived from the deviations

of the individual observations, the resulting mean error ey of
the individual group means and the mean error e, (bef.) of a
zonal-aberration observation calculated from the values of ey
mentioned previously. ep (aft.) and ey (bef.) are essentially
ldentical. The final rows contain the mean value of all obser-
vations, its mean error, derived from the remaining deviations

of the individual group means, and the same mean error derived
from the mean errors em. Judging from the mean errors, it is
likely that the differences between the zonal aberratlons

obtained from the measurements along different diameters are real.

The corresponding results of the observations made with
screen Dy on April 10 are collected in Table XX. If the results
of the two tables are compared, it is evident that the greatest
differences between the zonal aberrations cbfained from the
various diameters in the two tables head 1iIn the same directicn
(see e.g. P = 150°); Between the values zg§ for the two screens,

there 1s a difference which heads in the same direction as in
the pole-star observations.

As the final zonal aberrations zg and zy, I take the mean
values from the results with both screens, and I derive the
zonal aberrations of the remaining points from the results
obtained with screen Dy, by interpolating the systematic
reduction based on the zonal aberratlons zg and zy.
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TABLE XIX. TABLE XX.
2' z'
Dya2 =125mm; z,, =z, =0 D = 4P =25 mm; 1, = 2e=0 ¢
P |y=10{y=8y=6jy=4|y=2 P ly=8|y=4
nm | nmj. nmjnm-! nm nm | nm
00 | —59] —48 | ~46 | —40 | —16 0 —30] —48
0 —46} —49 | —42 | =535 | —25 180 —58{ —50
180 | 58| —60| —49 | 37| —6 Mean | 48| —19
Mean | _s¢| 53| 46| —44 | —16 W | -63] —58
30 —54| —70| —541 —40| —33 210 . | —40| —44
30 | 60| —60| —521 —38; —12 Mean. | —52| -5t
200 - | —58| —64| ~70! —33; —2 6 | —s8| —64
Mean —571 —63] —59: —q4i —22 210 —43| -2
60 | =3[ 40| —u! —m] o] | M3 | 0| —u
60 | —37( —67| —60 —60| —24 o0 —16| -3
. 210 —39! —38] —43; —38] —3 270 —45| ~39:
Mean + —43! —48] —40! —d44] 0| Mean | _y5| —35!
L 9 | 56| —66] —46] —48] —25 | =] -2
90 —35| —72| —32: —i2| =10 Jon | —46| —35
270 | ~62| —72] 66, —44| —16 Mean | _43| —2
Mean | _;g —70! 55 5] —17 150 66| —38
120 —60 | —62 = —15| 44 330 —78; —63
.. 120 7 =76 —d6] —12| 28 Mean —72! —o0
L 300 —67 | =721 —61! —18| —18l f | 473] 490
, Mean | —61 —700 —46! —i45{ —14; raft. ) 4103 |+12.8
D150 0 b 62 —661 —®! —76] —30] 114111
;10 | 671 76 —78 76 —26| Gdn. Mean: —33] —1
[ 330 | ~72] —87| —8f —71{ —20, Mean Error 440| 445
‘! _Méan | —68| —76] —80' _74} o5} Mean Erroy 2ol 37
. : v " 1 Ty '
P ey +39 | 453 4561 162 %63, from
+ @aft. }iﬁs +02| +0.7 4107 110! .
i bef. 1:{;81 4106 [+11.4 '+106- i-n!
Gen. Mean —58| —64;. 56 —8] —17
R}ei‘ﬁ Eggi 37 48 £531 155, 423
e from M 416 | £22| 423! 425! 426

Hence, we take the wvalues

z =

as the final zonal aberrations at the points y =

0, -55, -59, -53, -47, -17, O nm

12, 10,
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From the measurements taken with screen D, = 6.25 mm at
the periphery of the objective, I determined (uUsing the above-
mentloned fundamental values) zonal aberrations for the zone
Yy = 11 and also for the zone y = 13P = 81.25 mm near the edge
of the objectlve. From my observations on April 22 for dlameters
P =10° 30°, ..., 330°, I obtained zyq = -44 nm, z1q = +73 nm.
In these observatlons, the mean error of an alignmént was +0R,.018 =
= +0.42". The zonal aberrations of the refractor are depicted
_graphically in the table at the conclusion of the treatise.

22. In this connection, I mention a general formula by
which the mean error of the zonal aberration for the zone half
way between the center and the edge of an objective can be
determined. Let us assume that the separation of the siits is
1/n times the radius of the cutermost zone. Let n be an integer.
Then, the mean error 1is

/1—” |
“, = wypa D (38)

Here, nD is the radius of the outermost =zone.

Let us examine how accuracy varles when the spacing of the
slits is modifled. When the distance between the slits is
very small, we can consider the allgnment error to be propor-
tional to the number n (ef. p. 34), so that e, = Neg, where eg
is a constant. Then,

=

= V1
F-_.i —s

n

_ |
Vﬂ'ﬂDgf..‘ i (39)
F

|

Accuracy therefore rises as the distance between the slits /83
inereases. Conftinuing to increase the distance between the
slits, we find that the increase in alignment accuracy gradually
comes to a halt, until the accuracy is essentially independent

of the spacling of the slits beyond a specific limit. From
formula (38) we find that the accuracy of the zonal-aberration
determination decreases while the distance between the slits
Increases. However, if we allow for the fact that the number

of observations which can be made in a given period of time

is proportional to the distance between the slits, we arrive at
the result that the mean error Ezlfwis independent of the spacing

of the slits, as long as a given gmount of time independent of
the length of the series is employed for each observation.
Utilizing a fine slit spacing has one thing in its favor,

namely that the zonal aberrations at several points can be deter-
mnined at the same time.
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In general, the maximum alignment accuracy ought to be
achieved when the dikfance between the slits is still relatively
small. In studying medium-sized telescopes, there is no point
In making the distance between the slits more than about 3-4 cm.
If the separation of the slits is about 1/6 or 1/8 of the radius
of the outermost zone, the values obtained will already furnish
the basis for a zonal-aberratilon curve, presuming that the
wave front has a simple configuration. Extra points are most
useful for the peripheral zones, because there the variations
in the:wave froht are usually large.

23. I now mention briefly the results of my coma studies.
From observations which T made in determining zonal aberrations,
I found that the wave front did not exhibit any appreciable
asymmetry, as long as the image was in the center of the field /84
of vision. O©On April 12, I determined with screen Do the coma
from observations along diameters P = 0°, 90°, 180°, 270°,
while the artificial star was situated_at the edges of the fleld
of vision at micrometer readings u = 6R and 548, The results
are found in Table XXI.

TABLE XXI.
Cy “%(hn—h—y)
_ C=0=0. .
P u py=10 | g=3 y=0 g=4 y=2
.nm | nm ! nm nm - | nm
0 54R —x —10 .| -1 ~8 —6
(i +3 —~2 48 | 413 +11
Difl. —27 -8 —19 —21 —17
180 4R +8 -1 —12 +12 +6
&R St 436 +30 427 +12
Diff. -0 | a7 —42 -15 —6
270 4R +10 -2 —6 -3 -2
6f +34 +15 +138 -2 -6
Diff. —24 —17° —29 —1 +4
90 SR | —6 -0 -4 +4 | .14 |
6R —4 -6 +3 +5 46
. Diff —2 | 46 —9 -1 +8
“Mean ., Diff. —16 —14 —24 —10 -3
Mean error 16 449 +7 +5 46

From the table, it can be seen that the image is almost
coma-free over the entire field of vision. It is well known
that the Fraunhofer objective design is close to that design
in which the sine condition is satisfied.
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By measuring the separation of the interference bands, I
obtained as the effective wavelength of the light source X = /85
= 572 nm with aperture Dy, A = 573 nm with aperture Dp, and
A = 584 nm with a grating in which the slit spacing was 6.25 mm.

24. Using the three-~hole method, I studied the astigmatism
of the objective by determining the aberrations of the wave front
in a zone of radius 75 mm. The measurements were taken in the
same fashion as in the investligation of the small transit, but
the number of holes was twice as large so that the aberration of
the wave front was determined at 24 points in that zone. The
distance between adjacent holes was 19.57 mm, and the holes were
5 mm in diameter.

I will mention only the final results of the four series
of observations made on April 20, 1921. From differences in
the alignments made with the same aperture position, I found
the mean error of an alighnment to be +0R.0,138 = +0.32",
which means that the mean error of each u and v is £ = 08,0098 =
= +0,23". According to this mean error, the mean final error
of a series of observations would be JEﬁDps = £105 nm. In fact,
the final errors are +26, -46, -72, and +79 nm, and therefore
much smaller. The aberrations of the wave front are shown in

Table XXIT.
The fourth column of the table contains the mean values

of the aberrations at points lying along a given diameter.
These can be approximated by the formula

h = =34 + 39 cos 2(P + 12°),

and these calculated values are entered in the fifth column.
The last column contalns the differences between the values of
the preceding two columns.
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TABLE XXII.

K hp | hpijae| Mean |, h DL,
nm nm nm nm nm
0° 0 0 0 +2 —2
15 -13 | . -3 —8 | =11 |7 43
30 -31 —-29 -30 —30 0
45 —66 —47 —-56 —50 —6 |
60 —69 —66 - 68 —66 —2
% —67 | —62 | —81 | —13 | 49 |
20 —82 —82 -~ 82 ~70 —-12
105° | —69 -2 —46 ~57 +11
120 -~ 66 —10 —38 —38 0 |
135 —50 ] -2 —18 —7
150 —40 42 —9 -2 -7
165 -10 440 +15 +5 +10

The mean value (hp + hp go)/2 can also be determined by
the two-slit method from the ogservatiOns along various diameters.
I calculated these mean values from the observations made to
determine zonal aberrations, and found almost the same astigmatism
properties as I had found earlier with the three-hole method.
However, the latter method is preferable in studying astigmatism
for easily understandable reasons.

The Large Transit

25. In this instrument as well, the objective 1s a prcoduct
of Utzschneider & Fraunhofer. Its diameter is 16 em and its
focal length 240 em. The instrument was used in its time to
observe the Helsinki zone of the A.G. Catalogue. The objective
was consldered good.

On April 19, 1921, I determined the zonal aberrations of /8
the objective by the two-slit method, observing the pole star -
in inferior culmination. The slits in the screen were 30 mm
long and 6.25 mm wide, and their centers were 12.5 mm apart.

The outermost observed zone was 75 mm from the optleal axis.

I studied only the horlzontal diameter of the objective. The
screen was shifted back and forth three times, so that a total
of six alignments were made. in each position of the screen.
The mean error of an alignment was 10.42", From the obser-
vations, I obtained the following zonal aberrations.
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TABLE XXIII.

D e - — T

| Zone radius y in mm...| 75 | 625| 50| 375 25| 125 O { |
zonal ab-., jnnm...| o |-58| 03|85 |—73|-7 | ©
h’lean erToT . .:z.....} 7 491410 | 491 47

The mean errors are derived from the mean error of an
alignment.

Application of the Three-3S1it Method

26. At home, I studied small objectives and the parabolic
mirror I had ground myself, using almost exclusively the three-
slit method, since this method does not require that the iuves
investigation apparatus be extremely steady, a property hard
to achieve 1n an ordinary living room. As an example, 1 will
take the parabolic mirror which I ground for the "Ursa" astro-
nomilcal soclety. The mirror was 17.5 cm in diameter. I used
an artificial star placed close to the cenfter of curvature of
the mirror. The foecal length of the mirror was 120 cm. In the
investigation, the mirror was unsilvered.

The 1nvestigation apparatus 1s depilcted schematically
in Fig. 11.

A is the light source
(the filament of an electric
bulb), and B a microscope
objective which projects the
image of A intoc the 0.1-mm
hole in the screen C., The

the resulting point image,
and the prism E reflects the
light beam toward the mirror
F under i1nvestigation, in
front of which is a movable
secreen G with three slits in

the light beam passes the
prism E and generates an
Flg. 11. image near the center of
curvature of the mirror.

This image 1s viewed with

the powerful ocular H the motion of which 1n the direction of

it. Reflected by the mirror,

/88

miceroscope objective D reduces

the optical axis 1s read off the scale K divided into millimeters.
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The slits in the screen were 25 mm long and 5 mm wide, and
the midpoints of adjacent slits were D = 20 mm apart. Accordingly,
the distance between adjacent marks on the scale showing the
position of the screen G was 1P = 20 mm. The ocutermost investi- /89
gated zone was 80 mm from the optical axis.

The observations were made as follows. The screen was
placed so that the slits were situated at the points -4, -3,
and -2. For the sake of brevity, we say that the position of
the screen was -3. An observation was made (see p. 15),
obtaining the readings w' and w" on the scale of the ocular.
Next, observations were made with the screen in positions -2,
-1, 0, 1, 2, and 3. To save time, I have made such simple obser-
vations when grinding mirrors. Table XXIV contains my observations
cn December 17, 1921. w is the mean value of the readings w' and

n 0 =
w", and Wy ‘(WY + w_y)/2.

TABLE XXIV.

¥ w w i w we

mm mm I mm mm l\.
-3 544 632 | 5880 | 30.00 |
-2 | "33 |. 628 ! 5845 | "58.22 :
—1 515 508 | 5363 | 35.68 |
0 92 | 381 | 5363 ! 5365 |
+1 512 602 | 5370 ‘
+2 53.4 626 | 5800 l
+3 548 | 636 | 5020 ‘

27. Let b be the approximate distance between the image
and the mirror, and let w be the average position of the ocular,
and let us imagine that the center of the reference:sphere is
located in the corresponding movable plane. We use the symbols

Ahﬂ+i”= hn-+l_,hu’ . (
Athy =8hyy —Oh,_y=h =2k R, | (40)
. B . 1‘
It 1s then easy to find the following baslc formula /90
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The calculations can be done e.g. as follows. First, we
take h_y = h_» = 0. Using formulas (40) and (41), we determine
the remaining deviations h_ 2, h_9, ..., hy. By attaching a
sultable expression o + By + Yya to the dev1ations, changing

only the reference sphere, we arrange that h_y = hg = hy = 0.

Also, w and Ah;Bl can be detérminéd’in advance so that h_j =
2. .
= hy = hy = 0. One then makes use of the formulas

- %(w_3+2w_2+3w_1+4wb+3.wl+2wg+wa).

Dy o .
a*h, = (F) (wy—w), - (42)
Bh_yym—(38%h_ 3+ 248%h o+ Ah_y),
h_y =0, {

By means of formulas (40), the remaining deviations are obtained,
as well as two controls, since hU = hy = 0.

It we desire only the zonal aberrations, we take the mean
values wl = (wy + w y)/2 and then use the formulas (42) and (40),
subst1tu¥1ng = w_, = WY in them everywhere. In our example,
the calculatlog of t%e zonal aberrations is organized as follows

{see Table XXV).

TABLE XXV.
Ty w lur=w| a*h Ah h Red. | =z

mm mm nm ; nm nm nm nm
4 : _qen 0 0 0
3 | 5900} 9.00| 4278 4178 | +53 g | 189 | 183 —6
2 | 5822 16.44 | 4200 4128 | 4236 +—111 200 | 4139 | —-61
1 | 5568] 1704 |'—054| —34| —34 & —83 | 444 -39
0 | 5365 730|-—257| —164 _ ' o ol 0 |

4978 ' +736 .
w = 56.22 ah__n*q-—lm T

The artificial star was a = 2300 mm from the mirror, while
the image was b = 2500 mm away. In order to fird the deviations
of the wave front when the star i1s at an infinite distance, the
reduction
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-1 .3 . ;
1)
R s (43)

-

is to be applied to the deviations h, where F is the focal /91
length of the mirror and yy the radius of the outermost zone.
Taking this reduction into account, we obtaln the zonal aber-
ratlons listed in the last column of the table. The deviations

of the surface of the mirror from a paraboloild are exactly equal

to half the numbers z.

28. I will now devote a few words to the precision of the
observations. From several series of observations which I made
in grinding the mirror mentioned in the example and another
mirror of equal size, I calculated the differences w" - w' and
then the mean error of a w from their deviations from the mean
value. I found g, = #0.17 mm. For the mean error of the
zonal aberrations, I derived the following formulas:

D

'e.=’=?(.1132_'(g)'£'"" ' \ (44)
=t (D
Taking €, = +0.17 mm, we obtain ez = %6 nm, EZE = %7 nm, /92

eé{ = 4 nm. The accuracy is therefore quite satisfactory.

In the general case in which D is 1/n of the radius of
the outermost zone, where n is an integer, the mean error le
1

Z
of the zonal aberration for the zone half.way between the center
and the edge of the obJective is obtalned from the following
formula, which I will not derive here for the sake of brevity.

.‘n.%%l/‘“_‘“" (n;+5)(g)=‘"'- f (45)

i

If D is small, (D/b)zew can be viewed as roughly constant.
I observed this in the experiments, and it seemed natural after
some Yeflection. From (45), one then finds that n should. be as
small as possible and hence D as large as possible in order
that Zln be determined as precisely as possible. If D increases,
2.
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so does (D/b)%e,, albelt gradually, and finally a limit:is reached
after which ey, no longer diminishes appreciably. Then, the
accuracy of the zonal-aberration determination decreases while

D increases. The most favorable value of D must be determined
empirically. In studying the 17.5~cm mirror mentioned in the
example, the aberration of zone y = 40 mm would have been somewhat
more accurately determined with screen D = 40 mm than with screen
D = 20 mm, but in view of the fact that the latter screen would
still have to have been used to interpolate the aberrations of
zones y = 60 mm and y = 20 mm, requiring substantially more time
for the observatlons, I contented myself with using just screen
D= 20 mm.

From the difference w" -~ w' (p. 63), the effective wave-
length of the light source can be determined by means of the
formula (cf. pp. 14-15)

1= (Bfwr-w | ey 2

[

From several observations with screen D = 20 mm, I obtained
the mean value w" - w! = 8.83 mm, corresponding to A» = 565 nm.

I also carried out some experiments using the three-slit
method with a star as the light source, and the method proved
quite usable in thls case as well. Since the rapid motion of
the star 1s not detrimental, as it would be in the two-slit
method, first-magnitude stars can be used as observation
targets. In the northern latitudes, for example, Vega and
Capella are very suitable for this purpose.

Michelson's Method and Other Applications of the Methods

29. Michelson's method, which was already referred to in
the introduction, differs substantially from the two-slit
method described above in that Michelson held a slit at the
center of the objectlive during the entire duration of the
measurements and gradually shifted the other slit from near
the center toward the edge. Both of Michelson's experiments
were .conducted in the laboratory using monochromatic light
and a highly magnifying microscope. In these measurements,
the method did prove thoroughly practical, but it is evident
that Michelson's method would be beset by many difficulties
in observatories, where it is mainly natural or distant
artifical stars which are used. It was mentioned on p.. /83 /94
that the allgnment accuracy eventually quits increasing as T
the distance between the slits is enlarged, because of air
turbulence. This occurs wheni.the slits are several centimeters

66



apart, and is the reason why the deviations of the peripheral
zones are determined most poorly, and why, in fact, the align-
ment of the central interference band c¢an be impossible because
of alr turbulence when the peripheral zones of large telescopes
.are investigated. In refractors, the secondary spectrum also
makes 1t very difficult to distingulsh the central interference
band from the remaining ones when the separation of the slits

is large. In some cases, Michelson's method requires a specilal
ocular microscope, since ordinary magnifications are not good
enough for clear observation of the fine interference figure.
The circumstance that the size of the 1nterference figure changes
with the separation of the slits can induce systematic alignment
errors. In this respect as well, my method should be better.

30. I would alsoc like to menticon two modifications which
I envisage in the two-slit and three-hole methods, so that it
will no longer be necessary to keep the Instrument statlonary
except for a short period of time. The basic idea of these
modifications is that a second 1mage of the star is obtained
in the various methods, and this image is independent of the
interference figure generated by the movable screen. I will
describe this procedure in the appllication of the ftwo-slit
method; it requires only minor revisions to apply 1t to the
three-hole method as well.

In one modification, the comparison image is produced by
means of a small prism, the prism angle of which is so small
that the light beam is only deflected by a few tens of arc
seconds in passing through it. Assume e.g. that the movable /95
sereen 1s in the horizontal direction. Above or below the
movable screen, two slits are made in the strip which helds 1it,
the slits being parallel to the slits on the screen. The
prism is fastened to the slits of the strip. In that case, two
separate interference figures are visible simultaneously. In
each position of the screen, an alignment is made on the central
bands of both figures. The telescope must therefore be stationary
only for a few seconds. In photographing, both figures are
imaged at the same time. It is useful to turn the prism into
such a position that the interference figures are as close as
possible to being one above the other, since then the observations
can be made with a minimum of screw rotation. Using a simple
prism naturally suffices in all cases, since the prism angle
is so small that the prism does not generate any appreclable
spectrum, and moreover, any such spectrum would never make the
interference figure asymmetric about the central band as long
as the prism has been turned into the given posifion. In observ-
ing the pole star, one can even get along without movable
halrlines, elther by turning the prism into such a position that
the transit of the two images at a fixed hairline takes place
in a very short time, or by observing the transits of the bands
over two different hairlines.
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The seccnd procedure uses extrafocal images. As in the
first modification, the slits are made in the fixed strip as
far as possible from the movable screen. If, in both slit
systems, the separation of the slits is small in comparison
to the semidiameter of the obJectlve aperture, two independent
interference flgures are produced in the movable plane, once
the movable plane has been pushed inward or cutward a suitable
distance from the focus. The measurements are then made in
the same way as in the first medification. The observations are /96
to be made while the movable plane 1s inside and then outside
the focus. The first section of the calculations is done in
the same way as in Hartmann's method. By this method, I deter-
mined the zonal aberrations of the 17.5-cm refractor with a
short series of observations, and, on the whole, obtained the
results given earlier. This modification is not completely
satisfactory, however, since the correction term n" (p. 25)
may assume measurable values. In my opinion, the rellabllity
of the method therefore requires detailed study based on
suitable experiments.
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IV. ASSESSING THE QUALITY OF OBJECTIVES 7

Lehmannts Technical Constant

31. Lehmann's technical constant T is calculated by the
well-known formula [13]:

._ 20000 IriF-Fy
T~ % (47)

v 4

For the calculation, the objective is broken up into many zones
of equal width. »r is the radius of the general zone and F its
corresponding v focal length. Fg is an average focal length.

The value of T depends on the value chosen for Fy. It
might appear most natural to determine Fn so that T is minimized.
This 1s the way Fox calculated the technical constant for the
large objective of the Yerkes observatory [14]. However, silnce
the Fp corresponding to the minimum of T ecannot be calculated by
a simple formula, attempts have been made to determine Fp in
other ways.

In his calculations of the technical constant T for several
large objectives, Hartmann employed two different methods to
determine Fg [2, p. 102]. In most cases, the mean value of the /98
focal lengths of the different zones was chosen as Fo. In
other cases, however, Hartmann believed that this method wouldii
not accurately reflect the correction of an objective, and he
chose as the movable plane the plane in whieh all light beams
passing through the objective compress to the smallest area,
and which is calculated as follows [2, p. 45].

"If F1 and Fp are the extreme values of the focal
length nearest to the edge of the objective, correspond-
ing to radii rj and ro, the smallest geometric scattering
disk is obtained at

{

F,=Brefnl 0 (4s8)

r+r,

These procedures, particularly the latter, were also used
later 1n calculating the technical constant in order to determine
the movable plane,

We wish to show the results which will be obtained by
these methods for determining the movable plane in two typical
cases, namely for pure spherical aberration and for typical
zonal aberration.

69



Let the radius of the objective aperture be R. We use the
symbols

H

0= ,A F— F
R (49)

where Fé is an average value of the focal length.

Pure spherical aberratlion is represented by the formula

A=k|0?: (50)

and the following formula expresses the typical zonal aberration
at which the central and peripheral beams have the same focal
lengths:

A= ke (02 —¢*) (51)

If the objective 1is divided 1into infinitely many zones, /99

the definition of the technical constant is obtalned in the fornm

R

190 £ ip 2
TFF‘RJ.!A Ag'dr (52)

or else

1
; R ,
,T=4-100 5 [ e*la—4!de.
, Fof (53)

We now consider the case of pure spherical aberration. We
determine ag:at first so that T attains its minimum value Tg.
By calculations, with which I will not bother the reader, we
find

8—by=k(e*— /1) = ki (¢ —0.62996),
To=s0(1 Vi :“’ z'm,’;f‘. | (54)
¥ ‘

If, on the other hand, the adjustable plane 1s chosen so
that one takes the mean value of the focal lengths of all zones,
we find

B —8g=ky (e —3)) »
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and the corresponding technical constant is

T, = 42398 5B _ 143 7,. °

If we calculate Ag by Hartmann's second method, we find

A==k (- 1),
| T,=53333%L ~ 180 T,.
: ;

As is evident, both Ty and T, are quite different from To-
The second method 1s obviously totally unsuitable in this case,
Since the differences willl then all have the same signs.

We perform the same calculations for the case of typiecal
zonal aberratlion. By the minimum condltlon, we go through
relatively tedious calculations to find

A — Ay = kg (¢? — o —0.1933),

_ ) (55)
T, = 7973’5;7". o

By Hartmann's first method, we find

' I' A— Ag = kg (Q’ — Q. bl 01-333), !
.. kR
T, = 9761 '-E,g— = 1.22 T,\.

and with the second 7
& — &g = ks (0 — ¢* — 0.1035)

Ty= 174655 - 147 T,

0

In this case, Ty and Tp do not differ as much from Ty as in the
case of pure spherical aberration, but the difference is still
~ considerahle.

As mentioned, Hartmann states that his filrst method is
not suitable for determining the movable plane in some cases.
From the above calculations, however, we see that Hartmann's
second method cannoct be used at all in cases like that of pure
spherical aberration. By contrast, typical zonal aberration is
reminiscent of cases in. which Hartmann's second method would be
usable. By choosing the most appropriate of these methods for
each individual case, 1t ought to be possible to determine T
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properly in many cases, although the resulting values will

~generally be larger than those calculated from the minimum con-
dition. On the other hand, it is undeniable that it may be

difficult to declde which of the two methods to employ in

complicated cases, and the result of the calculation will acquire//101
a subjective stamp. Therefore, I think it preferable to give

priority to a method of calculation applicable in all cases

without yielding highly erroneous results, and in which T does

not differ too much from the minimum value of T if this can

somehow be accomplished.

32. Various ways of determining Ap are contained in the

formula . _ S .

f?"Ad,‘ ’ 1

Be=" = (nx l)fg"f.‘-dg (n > 0).
Vo, s a -

I " de
o

(56)

The larger the value of n, the greater the welght glven to the
peripheral beams.

The case n = 0 is 1dentical with Hartmann's first method.

If n = 3, 1t is easy to show that we can find the adjustable
plane in which the sum of the squares of the lateral deviations
of the light beams is minimized. Determining Ag in this way,
we will obtaln, in the zonal-aberration cases discussed above,
values for T differing very little from Tgp; namely, for pure
spherical aberration we find a technical constant of 1.007 Ty
and for typical zonal aberration 1.047 Tg.

In our examples, the technical constant differs even less
from Tg, when n = 2 and Ag is therefore determined by the formula

1
| A,=3j o* Adp
Q

Fox employed this formula in the form of a finite sum in /102
the previously mentioned case, in order to find an approximate
value for Tp. By improving it, he then looked for the plane in
which T was minimized. However, this minimum was only slightly
less than the Tirst approximation to T

In the'caSé'of pure spherical aberration, we obtain, deter-
mining Ap by the last formula
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A—3j,=k (Q’——%)-

T= 2074458 ~1.005 T,

n -
and in the ¢ase ¢of typlcal zonal aberration

A— Qo=1Fky(o?—¢*—0.1714),
kR '
T = 8237 =i 1.032 T,.

Practically speaking, the technical constant found in both
cases is identical with Ty. It seems very natural that the
latter method for determining the adjustable plane would not
ylield totally erroneous results in more general cases either.
Moreover, this method makes calculating the technical constant
relatively simple, since the value of the integrand p2A cal-
culated to derive Ag can be employed in calculating T.

Consequently, I propose that the latter method be employed
In all cases to calculate the technical constant based on the
focal lengths, i.e. that T be calculated by the formulas

.. l .
. __' Ao:gf’@‘ﬂd?!
o ; - (57)
. LR oAb, ide.
 T=4-10° ﬁ!ei i

With the aid of these formulas, I have calculated the value/103
of T over again for the objectives, the techniecal constants of
which Hartmann had reported in hils previously clted work, and =
alsco for some other objectives, the zonal aberrations of which
I was able to discover in the literature. The results are col-
lected in Table XXIX. The most noteworthy change was found for
the technical constants of the objectives of Pulkowa and Ottawa,
which were, according to the new calculation, less than half the
previously calculated values. No great changes were encountered
in the constants of the remaining objectives. For some objectives,
my value was even larger than the previcus one, which can be
explained by the fact that I extrapoclated the focal-length curves
to the edge of the obJective, where the deviations are usually
the greatest.

Diffraction-Theoretic Technical Constant

33. As mentioned in the Introduction, Strehl thought that a
good standard for the quallty of an obJective was the ratio
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between the light intensity at the center of the diffraction
pattern produced by the objective and that at the center of a
diffraction pattern produced by an aberration-free objective

of equal size. Since the brightness of the center of the
pattern changes depending on how the telescope is focused, one
must attempt to determine the movable plane so that the brlght-
ness 1n the center of the image is as great as possible.

As before, we use h to designate the deviation of the light
front from the reference sphere at a distance r from the optilcal
axls and at the azimuth w. In the center of the reference
sphere, the light intensity is proporticnal to the expression [15]:

I =¢r2 4 gl /104
Where
ix R

. C'= f fcos 2rh i dw,
o0

2z R

=fj sing#rdrdm
o 0

or, setting q = (r/R)2 = p2,

2x 1

C=xi f f cos ——‘dqdm

2z 1

= -R*fj smz-ﬂdqd

Assume that the objectlive has only zonal aberrations. Then, h
depends only on ¢ and we obfain

- 1

C=nxl3 [cos‘"hdq,

S =nR2 fsm'ﬂ'dq
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For an ideal objective, h = 0, and accordingly

Co=mR?, Sg=0, I,— R

The technical constant Z corrésponding to the definitioniof
Strehl is therefore obtained from the formula

Z=-§:=C‘-lj52, (58)
where
. . ! g
o Cuéfcosz%h'dq‘.
o' o ‘ (59)
S=fsin?-:—h"|dq
0

Since the cases occurring in practice seldom have deviations
of the wave front which can be represented by simple analytic
expressions, the integrals C and S must generally be evaluated
by numerical integration. However, in the case that the devia-
tions of the wave front are very small, the calculation of Z can
be set up more simply by substituting series expansions for the
trigonometric functicns in the integrands.

For brevity, let

§ = 2nh/\. (60)
We obtain
1
c-[a—tos o Los Lo )d
. 2 24 720 40320 I
0
1
S=f@-lesto_ L ai_..a
‘ (6 =59+ 0% — 50599 + )dg.
0 .
Let

1 1 1
n=fﬁw.nejﬁwm n=j&wyh- (61)
1] L) B 0
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Then

and .
. 12 1 1y, (1.1
Z=1 +(r?—rs)+(4r§-3rm+ﬁr¢)+(3ﬁr,—.2;,-nn+ /106
* 1 1 t 2 1 1
‘+6‘ﬁflfl_'3T07¢)+(ﬁafi_ﬁ“@rari'*'mflfl‘—- (62)

1 1
“ﬁﬁl’rl'mh)“"”-

- . - - ‘[i’

34, Now assume that the deviations of the wave front are
50 small that the higher-order terms can be neglected. Then

Zel—(n—r) 4

We now determine the reference sphere so that Z is as large as
peossible, so that

c-—-(2%)’(7:—rf)=ff;:;d9'“(f”:d‘?)
] e -

is as small as possible.

A very small change in the reference sphere, without
changing the optical axis, turns the deviation h of the wave
front into the deviation h', the latter being obtained from
the equation

h' = h + ag + b,

where a and b are constants which depend on the change in the
reference:.sphere.

In that case, t becomes

, 1 R 8 2
¢ = f hf*‘dq—(f h'dq) =
[ , ;) !
2

. . ‘
=.j_};=dq-—(fhdq) +a(2f hgdq—
. 0 Ve 0

1

]- hdq){t ,l.za'.

.
| a
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Therefore, b has no effect on the value of 1!, as would have
been anticipated. ' is a minimum when

' 1
‘2= e(fhdé;- 2'[! hqdq).
. P 1 ] 4]

L

™~
|
Lo}
~3

The corresponding minimum of T is
’ 1 h 1 .3
%= [ h”dq,-—( | h'dq) |
A . o ) '
) 1 o g’ 1 .o ]
=fh=dq'-( hdq) —3(fhdq—2thdq) .
B . 0_ u 0

Substituting

. )
] h=h’—fh'dq=h+aq—(%a+[hdq)
T 0 ' ° .

we find
L
d=fmw.
1]

Hence, 1t} 1s the mean value of the squares of the deviations
h of the wave front. The square root
|

A i
Vro=¢.

we term the mean deviation of the light wave front, analogous teo
the term "mean error™ used in the least-squares method In
reality, the deviations h are then the remaining errors obtained
when the least-squares method has been used to determine the
sphere which best fits the wave front, and ¢ is the mean remain-
ing error.

We now correct the formulas for calculating the mean
deviation. We c¢alculate -

a - e(f}:dq-zfﬁqdq).

6
h h+w (a+j}@) (63)

~
|__l
o
o

:

=fhqu _ ' -



1 T I- 1 T

~e;";ff'fii_(a{hdq) —3(a['hdq-—2_othdq). (64)

Finally, when the déViations of the wave front are sufficiently
small,
“

Z=1-(% o,
~) ) (65)

Hence, 1if the deviations of the wave front are very small,
4 depends only on the mean deviation e and not at all on the
configuration of the wave front. The number ¢ can be viewed as
a standard for the quality of an objective which is just as
good as the number Z. When the deviations of the wave front are
50 large that the higher-order terms in the expression for Z can
no longer be neglected, the constant Z can naturally no longer
be calculated with the aid of ¢ by itself, but the mean deviation
€ can still be viewed as a standard for the quality of the objec-
tive, since in general Z decreases as e lncreases.

If the deviations of the wave front are so large that the
serles expansion of Z does not converge rapidly, it 1s best to
calculate Z by numerical integration using exact formulas. For
simplieity, the rfeference sphere can then be determined as in
the calculation of the mean deviation el. 1In executing the cal- /109
culations, one therefore employs the deviations h, or else the
deviations h', which would yield an identical result.

The reference sphere can also be determined graphically.
This 1s the way Strehl did 1t [16]. The deviations of the wave
front are plotted on the vertiecal axis and q on the horizontal
axls. The surface of the sphere is then represented by a straight
line in the diagram. The line which best fits the curve repre-
senting the wave front can be drawn quite well by examination.
The graphic method can also be used, of course, to do the inte-
 grations. Namely, the mean deviation can be caleculated rapidly
by the graphiec procedure.

35. We will first apply our formulas to pure spherical
aberration and to typical zonal aberration. The deviations h
of the wave front are computed from the focal-length deviations

1Of coﬁrse;_thﬂs réferénce'sphere'is not precisely the same as
the sphere which minimizes Z.
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A using the dlfferentlal equation
[
.3 !
e (66)
which we can also write in the form

(s | (67)

In practice, an avérage focal length Fg can be used on the right
side of the equation in place of F. We then obtain

q
h=_;_(g’)=fadq, (68)

if we assume h = 0 in the center of the obJective.

In the case of spherical aberration, /110
A = qu.
By integration, we obtain
Sty R\ } 1, (R
h'fl"l(r.) =gk ."Fi"l(ﬁ).: (69)

Usling the formulas we have derived, we find

ﬁl x (Q".'—‘I"" (15)'
W R 3 k| - o . - i
’=é?§°(ﬁ)2um’ _ Co (70)

a - x * ' - ", ‘ {
2= (7 + (5 s (5 4

or, when x, is expressed in terms of e,

]

2ot CEf O - e (11

In the case of typical zonal aberration, we start with
the equation ‘

8 = ky(q - )

and obtain
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hegn(f) Qo =e)=nlpe—e)s n= (R,
'ﬁ=.f:(;7,—g'?+g‘?’—?’)- | .

535;3%5:(%)21_21%}?’ - | ' - - (72)
2= 155 (7 + g (1)~

I

We take oné fﬁrther example, in which the number of zones
n can be arbitrarily large. Let

 h=zcos2mng (73)
We obtain él;l
h=h,
{:.1‘. “«
v2'
(74

where Jg is the zero-order Bessel function, 1.e.

: - .
J.(z)=}fcos(x_1:65m)dm. ) \

The series expansion 1s

e

(75)

Hence, Z is independent of the number n of zones.

Figure 12 depicts the deviations of the wave front in the
three cases discussed above. Among the cases with many zones,
n = 2 was chosen. The absclssa in the dlagram 1s not g but the
radius p. For all curves, & was chosen to have the same value.

In examining the series expanslons of Z in terms of e in
these three cases, 1t can be seen that the corresponding coef-
ficients 1n the various series do not differ very much, so /112

———

80



— / that it seems likely that the
RS values of Z corresponding to
the same & in these three cases
will also be roughly equal even
, o J when e is rather large. The

1 AN = N_DDE : purpose of Table XXVI is to
gshow how Z wvaries with £ in my

/

i selected examples.
t
e —~ A ‘ . In the first column, ¢
‘ : *\\\a;,//h S —A \ 1s expressed in terms of the
| wavelength of the light. 1In

Fig. 12. the next two columns, this
number is converted to nanomefers,
first by assuming A = 560 nm,
l.e. the wavelength of the optically most effective light, and
in the second by assuming 2 = 430 nm, i.e. the photographically
most effective light. The three following columns give Z for the
cases of pure spherical aberration (Zl),'typical zonal aberration
(Zg), and the many zones (Z3). In the last column, Z has been
caleculated with the aid of “the first two terms of the series

expansion, i.e.

Z; _1— (2 ;r!)’ . J‘f

TABLE XXVI.

4 . & .
1 1=amnm1=£mn& o
. | nm ; Im.. : . |
0.00 S | 0 ¢ 1, 1000 1.00%) 1.000)
0.02 11 9 |-098% | 098 n.984 0484 |
o | 02 177 | 0939 0.93% 0.038 0.937 | |
006 1 34 |26 | 087 | 0867 0865 | 088 |
008 . 45 | M . 073 | 077 0.770 0.747 f '
| 010 | 56 43 | 0666 . 0668 | 0660 0.605 |
0.12 67 52 | 058 1 05% 051 | 0422
0.14 8160 0442 0444 0421 |- 022
o016 | s0 6 ;0341 | 0340 | 0308 | —001
0.18 101 rrR | Vx 0217 0208 | —0279
L 02 12 i 86 ! 018t ¢ 0169 | 0425 | -0579
oz 122 7 w3 0 o013 | o037 | 0062 | —oon
S - TR A TR A (1] ! 0.099 0.061 002 | —1274
026 146 112 0084 002 | 0002 —1.669
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Z is depicted as a /113
, function of ¢ in Fig. 13.

As can be seen from the
diagram, the curves for Zj,
. Zp, and Z5 do not differ
N markedly Until large values
K§\l . of £, and are all less than 1.
- As e increases, the values of
::\;L. Z decrease, and finally reach
=1, a minimum at a specific polnt.
pn If the computations were con-
tinued, it would be observed
Fig. 13. that the numbers for Z would
oscillate while decreasing,
the amplitude of the wave
converging to zero.

,//(/
,/’/

L1
e - dlo

36. As a comparison, we will also calculate how the tech-
nical constant T based on the focal lengths depends on e in these
three cases.

In the case of pure spherical aberration,

T = 1.589 % }l (76)

is acquired directly from the previously derived expressions.
In the case of typiecal zonal aberration,

N ﬁ
With many zones, /114

e 2531 - 1504 T, | (77)

Hh = x; cos 2Tng = £ ' 2 cos 27nq x

"l

the focal-length deviations

A 2(%)’%3 =—4y 2 (%)’n sin 2rng

=—4)2a¢ (%)‘ nsin 2z net.

are obtalined.
For simplicity, we take Ap = 0. It 1s not hard to see
that as ' n Increases, the movable plane defined in this way.

approaches the movable plane in which T attains its minimum.
We therefore obtain
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1
TO < 4.105 fg’[d-—ﬁ,;dg
(1]

olLlm

' 1
-
=16¥2.10° ngffwsin 2wnet ! dp.

i) »,

3

If we set v = 2p¥n, break up the interval of integration into
subintervals determined by the zeros of the integrand, and
integrate by parts, we find

1y/g 10 RV R Y /An
Tm=$yzﬁ?§P(V2T;4i Vdn—2)+} f*.__l.
+2[c(V2)—e (D) + c () — +--+c (VEn =] —e(V4n).

where

v

‘;c(v)=fcos;vzgfv a

s -

is the well-known Fresnel integral, for which tables have been
given in many optical works (ef. [17]).

For different values of n, we obtain

n=1, T®=15277%, /115
n=2, T®=30319¢ 215167, /115
ﬂ=3, T;'3)= 4.541 !.%:3.1'514_1%_!’ (?8)

n—4, T®=6050"0"=4-1512'F".

If n is very large, then

on- v an o ()] Lonsn e+ (3] -

where : 322($)=0. .

From these numerical examples, it 1s evident that T increases
in rough proportion to the number of zones, while ¢ remains con-
stant. Since, if e is small, the same values of ¢ correspond
to roughly equal values of Z, this indicates that the technical
constants of Strehl and Lehmann can provide a quite contrasting
picture of the correctness of the objective. '
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Assessing Objectives on the Basis of the Technical Constants

37.  Starting from well-known facts and our calculations
8o far, we will now attempt to present the principles on which
objectives can be judged. We first assume that there will be
high demands made on the objective, as will usually be the case
for an astroncomical objective.

In a diffraction pattern produced by an ideal objective,
the light intensity in the central disk is 84% of the entlre
light energy passing through the objective [18]. The remainder /116
of the light is distributed lover the interfererice rings, which
appear around the central disk. Keeping in mind that the light
intensity even at the brightest spot in the first interference
ring is only 1/60 of the light intensity at the center of the
diffraction pattern, and that the light intensity in the remain-
ing rings drops off sharply, 1t 1s clear that observation will
deal almost exclusively with the central disk of the diffraction
pattern and that its light intensity and diameter will determine
the power of the objective. The situation will not be altered
as long as the objective has zonal aberrations which are so small
that the brightness of the central disk continues to dominate,
and provides the actual Image. Slnece the dlameter of the central
disk depends 1n a complicated fashlion on the zonal aberrations,
and, as mentloned previously, 1s once in a while even smaller
than in the diffraction patftern of the ideal objective, - the
possibility remains that the light intensity of the central disk,
compared to the light intensity of the central disk in the patfern
produced by an ideal objective of the same type, can be viewed as
a standard for the technical perfection of the objective. Since
1t would generally be tedious to ealeulate this number, one must
content oneself with ascertaining just the brightness of the center
of the image, which will be roughly proportional to the intensity
of the entire central disk. In this fashicon, one arrives at the
technlcal c¢constant Z deflned by Strehl.

This shows that an obJectlve will cerftainly be a good one
if Z has a value close to unity, no matter what the form
of the light front. For an ideal objective, Z = 1 exactly. An
answer to the question of how much less than unity Z can be without
the objective losing 1ts ranking as a first-class lens 1s best
sought empirically, namely by determining the constant Z for the
largest possible number of modern objectives, the properties of
which have been established by thorough examinations. In Table /117
XXIX, I have ccllected my calculated values of Z for several
objectives. For most of the objectives in the table, Z is about
2/3 and above. All these objectives have been considered
first-class.

If Z is only a small fraction of unity, only a small fraction
of the entire light energy is concentrated in the central disk of
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the diffraction pattern, and the remainder 1s distributed over
the surrounding interference rings and makes them notlceably
“brighter. The central disk therefore loses i1ts dominant position,
and the pattern no longer has the form characteristic of a good
one. It i1s clear that the objective 1s then not good enough

for exact observations, e.g. perceiving fine surface details of
planets, separating close doubles, etc. In these cases, the
magnifications employed with the objective must be weak enough
that the central disk of the pattern and the interference rings
blur into a single image. Since the quality of the image also
depends on the distribution.ef the 1light over the interference
rings, and Z gives no. information about that, the number Z can
no longer be considered a standard for comparing objectives with
such great aberrations. If the Z ¢f an objective intended for
Precise observations is very small, however, a more detailed
classification is not necessary, and the objective can simply

be labeled unsatisfactory. It would not matter whether Z was
e.g. 0.01 or 0.05.

Earlier, 1t was polnted out that the mean deviatilion =
of the wave front can also be viewed as a standard in judging
the quality of an objectlive. Thils c¢laim is supported by my
three typical examples, which represent very different.types of
zonal aberrations. In these illustrations, we discovered that
a specilfic value of e corresponded to roughly identical values
of Z in these three different cases. The difference was not /118
appreciable until € was so large that the corresponding Z was
only a small fraction of unity. However, as we have Just noted,
the precise caleulation of Strehl's constant is no longer sig-
nificant in that case. The mean deviation e of the wave front
therefore proves to be a sultable measure of the perfection of
objectives intended for fine cbservations, for the same reasons
as for Strehl's constant Z. Not only is € much simpler to
calculate than Z, a very gcood approximation to Z can alsc be
obtalned from e with the aid of Table XXVI as long as ¢ 1is not
too large. 3ince pure spherical aberration_1s the most frequent
zonal aberration, using the value Zj Seems like a good idea.
Evell in the case that e 1s large, 1t is 8tilllto a certain extent
a sultable measure for the quality of an objectlve, since under-
standably, the larger £, the poorer the objective in_general.2

2Nonetheless, it is possible to construct cases in which Z = 1,
although e 1s large. JSuch a case 1s e.g. a wave front formed
by two concentric spherical-surface sectlons, with a phase
difference equal to the wavelength of the light. Of course,
such a case does not occur in practice unless it is specially
arranged.
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38. Starting from the diffraction-theoretic constants 2
and €, we now analyze the suitability of Lehmann's constant T
as a measure.of the quality of an objective. If e is very
small, the quality of the obJective is independent of the con-
figuration of the wave front. On the other hand, our examples
have shown that T rises reoughly linearly with the number of
zones 1f e is constant. Therefore, T does not deliver a reliable
picture of the quallty of the objective, and hence is not recom-
mended as a means to classify obJectives. It might be entirely /119
possible that two objectives of equal size would acquire zonal
aberrations in. refinishing giving them the same ¢ but glving one
ofithem a value of T five times as large as that of the other.
Such great differences may well not occur in practice. How
different the results from ¢ and T can be in practice can be seen
from the number RT/10% in Table XXIX. This number is based on -
the distribution of zonal aberrations to the various zones. It
can therefore be considered a constant characterizing the shape
of the wave front.

This says that an objective does not necessarily have to be
a poor one even if T were relatively large. On the other hand,
if T is very small, we can be practically certain that the
objective is a first-class one, since if T is sufficiently small,
Z is close to unity. In this case, we have assumed that the
wave front has no discontinuities.§

We now assume we are dealing with an objective which is not
intended for purposes which will place great demands on the
objective. To this class we may assign photographic objectives /120
for terrestrial pictures, terrestrial telescopes used with weak
magnifications, and, among astronomical objectives, at any rate,
the objectives of comet-seekers and short-focal-length objectives
and mirrors for stellar photographs. Such objectives can be
quite usable, even 1f the constant Z were to be small, and thus

3If the wave front is made up of two equally large sections of
concentric spheres, between which there is a phase difference of
one half a wavelength, the geometric focus 1s located at the cenfer
of the spheres, and T = 0, so the cobjective would be a good one.
In actuality, however, interference would reduce the intensity of
the 1light at the center of the spheres to zero, and the maximum Z
along the optical axls would be only about 0.1, sc that the objec~
tive was really a poor one. By dividing a parabolic mirror into
two zones of equal size, and covering them with silver layers of
different thicknesses, this zonal aberration and others as well
similar to it can be produced in practilce.
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the distribution of the light outside the optical axis as well
mist be calculated in order €o compare such objectives with

one another. It is very arduous to carry out such a calculation
using diffraction theory [19], so that a retreat to geometrical
optics and to its technical constant T would be in order. If

the deviations of the wave front are so large that the influence
of the diffraction phenomenon can be neglected by compariscn with
the zonal aberrations,. it would naturally be legitimate to use T.
In a certain sense, therefore, the parameters Z and T are supple-
mentary, the former working well when the deviations of the wave
front are small, and the latter becomlng more and more suitable
for comparing different objectives as the deviations of the wave
front increase.

The constants T and Z differ in another respect as well.
Namely, if it is applicable, the former parameter can be used to
compare obJectlves of different sizes, while the constant Z
expresses onhly the ratlo of the power of an objective to that
of an ideal objective of the same dimensions. ObJectives of
different sizes can be compared using Z in the following fashion.
As as cbserved earlier at one point, the intensity of light in
the central disk of the diffraction pattern can be consldered
proporticnal to Z in first approximation. Since the light /121
intensity in the pattern of an ideal objective is proportional
tc the square of the diameter D of the objective, the intensity
in the central disk of the objective is proportlonal to the
expression ZD2. This expresslion can also be viewed as a measure
of the quality of an objective. For greater convenlence, it
may be replaced by 1ts square root DVYZ, which gives the diameter
of the ideal lens for which the 1ntensity of the 1ilght in the
central dlsk of the pattern is the same as that in the central
disk of the pattern of the objective in question. The number DVZ
we term the effective diameter of the objective. With this
number, 1t is possible to classify objectives intended for fine
measurements but with different dimensions, and in fact, the
cbjectlves can be grouped by light intensity, while in the
classification by T, 1f leglitimate, the obJectives can be grouped
by the diameter of the patterns,

Applications

39. The methods described in this report for assessing

the quality of objectlves were applied to the objectives given

in the feollowing summary; I found the zonal aberrations for

these objectives in the literature. The figures on most of the
obJectives mentioned in the 1ist are taken from the publication
of Hartmann cited in the Introduction. The only mirror I include
1s the one I ground myself, since I have encountered hardly any
numbers referrlng to the aberraticns of mirrors in the literature.
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TABLE XXVII.

e

e e—

[.-h
No.Observa~ | Optician Typﬁg ﬂ-‘?g mf'-'ﬂ Source
tory . i
i cm. ! om.
1] Yerkes Clark Vis. 10161935 100 Publ. Potsdam 46
2! Potsdam Steinheil ‘Phot. | %0 {1219/ 15.2 . '
3) Pulkovo Clark (Vis. | 762111121185 -
w4 Yienna-Wihring | Grubb - G7.511036 154 . _
' 5! Berlin-Bab. Zeiss i - fia |1030! 16.0) Verd[f. Berl.-Bab. ITI
6 Potsdam Steinheil i. 50 {1256 25.1| Publ. Potsdam 46
71 Strassburg Merz . 49 | 602/ 14.1| A. N. 202, 4830
8 Berlin-Bab. Steinheil Phot.| 40 | 330, 13.8 Versfl. Berl.-Bab. i1l
9 Otlawa Brashear Vis. | 33.1! 570150 Publ. Potsdam 46
10! Potsdam . | Steinheil ‘Phot. | 425! 3111106 .
11! Potsdam Steinheil Vis. a0 ;363 121 .
12“}ienn$'éhﬁng Clark Po. L 430 16.0 n
13 Leipzig mmmumﬂg-jmamwmo .
14; Hamburg Merz - I 256, 302: 11 8 Mitt. Hamb.-Berge-
, E ] dorf 12
15! Polsdam Grubh .| 206 316 15.4 Publ. Potsdam 46 ,
16 Helsinki |Utzschn. u. : ' | ' i
Fraunh.! . -l 175} 288/ 16,3 T3 L
17; Helsinki Utzscha, u. I E | i This report l
| Fraunh.: .« 16 | 240150 . g
8y ~ Author  Mirror 175 121] 69 “ i

Except for the three last objectives, all lenses were

studied by Hartmann's method, finding the focal-length deviations

A,

values by the formula

by numerical integration.

h= ;(}{E)zbfA dg \\

The deviations of the light front h are obtained from these

drew focal~length curves from the given values for a.
ated these curves toward the center and toward the edge of the
objective, and then took values of A corresponding to the zones

from the curves.

P

= 0.02, 0.06, 0.10,

ce.y 0.98

To perform this calculation, I first

I extrapol- /123

After that, I did the mechanical integration

in simple fashion by calculating the first sum in the deviations

A and multiplied the resulting numbers by 0.04.

In thi

s way,

I determined h for the zones q = 0, 0.04, 0.08, ..., 1.00.
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From the values found for h, I calculated the mean devia-
tion ¢ of the wave front by two methods, first directly with
formula (64) and second using formulas (63), having first com-
puted the reduced deviations h. In all mechanical integrations,
the integrands were calculated for the zones q = 0.02, 0.06,
eesy 0.98. I also found Strehl's constant Z directly from 1ts
defining formulas (58) and (59) by mechanical integration. For
the visual objectives and the mirror, I took A = 560 nm as the
effective wavelength, and A = 430 nm for the photographic
objectives.

The configuration of the wave front is depicted graphically
in the table at the conclusion of the treatise. The abscissa
is p and the ordinate h expressed in nm. Beslde each curve, the

value of e 1is given. The numerical values of the deviations h
are found in Table XXVIIIT.

For each of the above objectlves, Table XXIX contains
1) the mean deviation e of the wave front, 2) the value of
Strehl's constant Zj] corresponding to the mean deviation e in —
the case of pure spherical aberration, 3) the value of Z cal-
culated from the defining formulas of Strehl's constant, 4) the
effective diameter Dv¥Z, 5) the Lehmann constant T calculated by
formulas (57), 6) the previgusly reported Lehmann constant T', /125
and 7) the expression RT/100¢ based on the form of the zonal-
aberration curves...

From the values for Strehl's constant it can be seen that
most of the objectives listed in the table are relatively good
from the point of view of zonal aberrations. Among the large
objectives, the one closest to the ideal is the 38.l1-cm objective
in Ottawa and the 76.2-cm objectlve 1in Pulkowa. The 50-cm
Potsdam, the 32.5-cm {(phot.) Potsdam and the 30-cm Leipzig
objectives have the smallest Strehl's constant. However, it
should be kept in mind that the deviations of the wave front for
these objectives are already so large that the reference sphere
used in calculating the mean deviation can differ appreciably /126
from the reference sphere which maximizes Z. In particular, this
is true of the Potsdam 32.5-cm objective. Accordling to the
calculations of Wilsing [19, p. 201, the brightness at the center
of the diffraction pattern at fhe focus of this objectlive is
0.15 of the brightness at the center of an ideal objectlve of
corresponding size.

Comparing the values Z7 and Z in the table shows that the
difference between these two numbers is at most 0.01, as long as
the three poor objectives mentioned above are ignored. Our
earlier conjecture, namely that e determines Z for good objec-
tives, is therefore corroborated in practice.. The expression
~given in the final column of the table (RT/lOGe) can, as

previously mentioned, be viewed as a constant reflecting the form
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TABLE XXVIII.

h in nm
e — — — — Sn— ~
X 1 2 1 ' 7 08 | 9] 101 13 15 | 16 18
. . g
0.00 [ 41011 —142 —2 —143| +62; —75 (4268 | 4101 +236 — 138 | +01 +51
0.02 | +145| —121 20 —121] 455 —74[4251] 4w +213 —133| 481 +34
0.06 | 03| 447 40 81| +43; —451 4212 473 4166 —~93| 45 +4
0.0 | 461 452 54 —38! 31|12l +162| 451 4121 —62{ 420 —12
04| 49] 48! A7 -8, +20, +4' 101! 428 37! +76 —10{ 18 -
018 | --19) —13! 43 HI00 1t 4200 431 41D 25, a3 —22; 49 ~23
022) - 27, -~ 25, 20 +2 3] 40 6y _v. —12 -6 o —23
026 1 —28| — i, -3 +30 2|10 106 ! —30 +15| —¢ 3| —19
030 | —30! 5 +7|= +281 —71319; =155 — {- ~81 439! —14 —12
031| 37| —n5 20| --27 +o1! —a2 +2->(-17s —~H 102 460 | % -1
038 | —17{ —10 | 420 2 -17 +24i-—131 - 51! —116 468 | —26 +3
042 | —57| 45 f 438 +-21f —25 435! 172 —55! —123 +73| =30 +10
046§ —63 421 +43 +26! —20| 4251 136 —58 —125 481! 36 +11
050 [ —63| 431 416 | - 4361 —35 +23§-133 —56 —120 +74| 40 +17
054 | —57| 440 418 +43] ~ 114200 1010 =33 —115 +66|—15 +18
038 | —52[ 446 444t Aol —16] 416} —71| —-42 —100 460§ —46 +19
062 —4| 450 48| — 453 —a8| 411 —37| —a2 -84 +51| —16 +17
066 | —33| 450 47 | — +32| 48| +6| 3! —: 66 +15|—41 +16
070 [ —17| 447 +15 +I3| 431 +1| 43| —10 -2 +37| —32 +12
074 —2| a8 +43 420 —33| —4! 438] 0 —19 +20|—20 +9
078 | 413, -}28 433 +7| —20| —8| 483} +11 49 413 —+ +46;
082 ] 20| +15 +17 =11 —t| =11} 4u8! 421 +40 -17| 49 +1!
08 | 426! —¢ -7 —-33| 10| —15|4103| 432 +71 — 45|43t ~5
090 | 435/ —31 .30 —585| 47| —18| +04| 443 +105 . —71| 449 —12
091 | +58| —67 —-88 ~76| 4+79(~21] 472! 453 +137 — 08| 467 —18
098 | 1121 —111 —152 —06 14113 24| 436 —+65 | =178 —126[-472 —23




TABLE XXIX.

!No% Objective - I A 4 :DyZ_ﬁij T 5;;
. ‘ pn | E em ! |

1{ Yerkes 1016 cmi 5 ;mn;nm; 837 020 ; 06| 18

" 2| Potsdam 80 .| A7 062 063] 635 030 034} 26

3] Pulkowa 762 . | 2. 002, 092 730, o.m_s! 018} 12

4 Wiénna- Wahring 675 - | 0 © 072] 073 57 037 | OJb! 25

5|Berlin-Bab. 63 .1 37 ' 084! 0% 506; 027! 0B 24,
6|Polsdam - 30 un_'ﬂZ&!ﬂﬁ).?TUilIﬁi L8 26 | )
7\Strassburg 49 .| 49 0330 031, 4210 0R5 ] 0347 18

4 Berlin-Bab. 30 .| 1 060 030 4 0531 048] 26

9 Oltawa 31 .1 20 omyem, w7 0n 0300 G
'10: Polsdam - 325 . | 123 008 0002 15| L2, 1301 16 )
‘11! Poltsdam 300 0] 57|07 M3 042 0l 14|

iz ‘.\}’ienna\\'ﬁhr“mg 0 . a9 i 0.64 i 064 20 079! (l.s-! s 2.0-; !

i 13' Leipzig 30 . W, 02 0,211 138 1007 095 14
"14; Hamburg 256 .| 306|065 06 126, — | 27}
15! Potsdam 206 .| 9 . 0671 066 167 103, 082 19
‘igHelsinki 135 .| M 00 08 19lon| - | 17 |
q7Helsinki © 16 .| 2 0g2lom 133! 040 — i 13

8 (Mirror) 179 - | 16 097l o7 172l 0 — 0 19

of the zonal aberrations. For comparison, we repeat that this
constant 1s 1.59 in the case of pure spherical aberration and
2.53 for typlecal zonal aberration.

40. Looking at the wave fronts depicted near the end of
this report, 1t can be seen that certain objectives could be
brought significantly closer tc the ideal objective if thﬁ
lens aperture were stopped down in an appropriate manner.

For instance, 1f the edge of the Potsdam visual 50-cm objective
is masked, leaving an aperture 44 cm in diameter (p = 0.88),
the objectlve can be greatly improved. In that case, namely,

e = 22 nm, 27 = 0.94, and DVZ{ = 42.6 cm. The center of the
pattern is therefore considerably brighter when the objective
is partially masked than when the aperture is completely open.

The curves illustrating the wave fronts demonstrate that /127
several of the objectives in question could be successfully

uFor thls purpose, it would be best to plot g on the horizontal
axis instead of p in the drawings of the wave fronts.
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light front are known, it 1s easy to tell which zones of the
obJective and how much to polish. Let n be the average refrac-
tive index of the glass of an objective which is to be corrected
by polishing a face. If, at this point, a layer of glass 1 unit
thick is removed, the deviation of the wave front is reduced here
by n - 1 units. Therefore, in order to suppress the deviation h
all the way to zero, a layer h/(n - 1) units of length thick must
be removed from the glass at this point. Hence, i1f the devia-
tions of the light front are multiplied by 1/(n - 1), the akterration
of a face of the objective is obtalned, while the other faces are
considered to be aberration-free. For mirrors, one must write

n = -1 and hence 1/(n - 1) = -1/2. For lenses, the corresponding
number varies between the values 1.6 and 2.0, depending on the
refractive index. This shows that algrindlng error in the surface
of a mirror causes a deviation 1n the light front about 3.2-4.0
times as great as a corresponding error in the surface of a lens.

The correction of zonal aberrations in an objective can be
conducted in infinitely many ways. As an illustration, we take
the Leipzig 30-cm refractor. In Fig. 14, the curve H reproduces
the light front of this refractor. To a large degree, the zonal

aberrations carry the stamp of
pure spherical aberration, and the

$o00 01 01 03 04 o5 Q4 07 o1 o9 W spherical aberration is overcor-

400
H d;V j rected in this case, since the
~ )d R ¢ focal length of the peripheral beams
Alb ol 3711 " nm | 1is greater than that for the central
N et __X beams, as can be seen immediately
—t=3—F x S B from curve H. In the drawing, each
C'T*"' b -0 | spherical surface corresponds to a
2l N, W PO parabola, and the limiting case is /128
Np / a straight line. Three different
corrections are illustrated in the

diagram, corresponding to the cor-
rected wave fronts A, B, and C.
Pig. 14. . In the first case, the center and
edge of the obJective are to be
polished until the curve representlng the wave front turns into
the stralight line A. In the second case, polishing the peripheral
sections gives rise to the zonal-aberration curve of parabola B,
and in the third, polishing the center converts it to parabola C
In practlce, the latter case is the simplest to accomplish, in
the view of opticlans. If the refinishing is achieved by polish-
ing crown glass, the difference of the ordinates for curves H
and C, multiplied by 2, is the thickness of the glass layer to
be removed from each zone. At the center of the objective,
therefore, there would be about 1.5 um to be removed.

Refinishing just the middle sections of the objective could
also correct several other of these objectives, e.g. the Potsdam
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photographlc 32.5-cm objective, which has large zonal aberrations.
It is true that these aberrations could not be completely cor-
rected just by polishing the central sections, and the zones
closer to the edge would also have to be polished, but the
remaining aberrations would not be very disturbing. Also, the
large objective of the Yerkes observatory could be corrected

by refinishing the central sections.

In this connection, I would like to mention that Schrdder, /129
in manufacturing objectives, intentionally caleculated the radii
of the faces so that spherical aberration would be overcorrected.
Once all the faces of the objective had been prepared as precisely
as possible in accordance with the calculatlions, he refinished
the central section of the last face of the objective, untll the
spherical aberration was corrected exactly. By using this pro-
cedure, he avolded the case of undercorrected spherical aberration,
which is more difficult to eliminate by refinishing. Undercorrec-
tion might well have been produced by grinding and polishing
errors than by the nonuniform density of the glass 1if the:
spherical aberration of the mathematically calculated objectilve
had been precisely equal to zero.

Five years ago, I had already produced a parabolic mirror
using the method described earlier, 1n which the light fronts
are used to correct the aberrations of an objective. Since, at
that time, I had not yet discovered how to ascertalin the devia-
tions of the wave front directly by the interference methods,
I first determined the focal-length deviations using the previously
known procedures, and then integrated them to obtain the devia-
tions of the 1light front. By inspecting the latter, I immediately
saw which part of the face and how much to polish. My methods
for determining the light wave front, for which any person can
very quickly fabricate the required equipment, supply:revery
optician with the means to check the quality of an objective with
great precision, and, by careful refinishing, to obtain objec-
tives which are practically 1deal. It will not be absolutely
necessary to restrict refinishing just to the central portions
of the objective. My experience indicates that all types of
zonal aberration can be successfully refinished away, although
refinishing the center is the easiest.
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